Characteristic polynomials for a cycle of non-linear discrete systems with time delays
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2016), pp. 104-115 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study a method associated with constructing of delayed feedback for local stabilization of periodic orbits of nonlinear discrete systems. An alternative approach to the construction of characteristic polynomial for the delay system linearized in the neighborhood of $T$-cycle is suggested. It is proven that our new alternative approach is equivalent to the standard one, however, it allows us to produce directly new forms of polynomials. These forms are convenient in applications to the problems of chaos control and allow us to apply methods of geometric complex function theory. This article is an extension of the results, which received D. Dmitrishin, P. Haglstein, A. Khamitova and A. Stokolos to the vector case. Refs 6. Fig 1.
Keywords: non-linear systems, asymptotic stability of cycles, DFC methods.
@article{VSPUI_2016_4_a9,
     author = {A. D. Khamitova},
     title = {Characteristic polynomials for a cycle of non-linear discrete systems with time delays},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {104--115},
     year = {2016},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2016_4_a9/}
}
TY  - JOUR
AU  - A. D. Khamitova
TI  - Characteristic polynomials for a cycle of non-linear discrete systems with time delays
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2016
SP  - 104
EP  - 115
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2016_4_a9/
LA  - en
ID  - VSPUI_2016_4_a9
ER  - 
%0 Journal Article
%A A. D. Khamitova
%T Characteristic polynomials for a cycle of non-linear discrete systems with time delays
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2016
%P 104-115
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2016_4_a9/
%G en
%F VSPUI_2016_4_a9
A. D. Khamitova. Characteristic polynomials for a cycle of non-linear discrete systems with time delays. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2016), pp. 104-115. http://geodesic.mathdoc.fr/item/VSPUI_2016_4_a9/

[1] Dmitrishin D., Hagelstein P., Khamitova A., Stokolos A., “On the stability of cycles by delayed feedback control”, Linear and Multilinear Algebra, 64:8 (2016), 1538–1549 | DOI | MR | Zbl

[2] Dmitrishin D., Khamitova A., Stokolos A., Tohaneanu M., “Extremal trigonometric polynomials and the problem of optimal stabilization of chaos”, Harmonic analysis, partial differential equations, complex analysis, Banach spaces, and operator theory, Association for Women in Mathematics Series, 2, 2016 (unpublished)

[3] Morgül Ö., “On the stability of delayed feedback controllers”, Physics Letters A, 314 (2003), 278–285 | DOI | MR | Zbl

[4] Horn R. A., Johnson C., Matrix analysis, Cambridge University Press, Cambridge, 1985, 561 pp. | MR | Zbl

[5] Dmitrishin D., Khamitova A., “Methods of harmonic analysis in nonlinear dynamics”, Comptes rendus mathematique, 351:9–10 (2013), 367–370 | DOI | MR | Zbl

[6] Dmitrishin D., Khamitova A., Stokolos A., “Fejér polynomials and Chaos”, Springer Proceedings in Mathematics and Statistics, 108, 2014, 49–75 | DOI | MR | Zbl