@article{VSPUI_2016_4_a5,
author = {I. S. Drokin},
title = {About an algorithm for consistent weights initialization of deep neural networks and neural networks ensemble learning},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {66--74},
year = {2016},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2016_4_a5/}
}
TY - JOUR AU - I. S. Drokin TI - About an algorithm for consistent weights initialization of deep neural networks and neural networks ensemble learning JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2016 SP - 66 EP - 74 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2016_4_a5/ LA - ru ID - VSPUI_2016_4_a5 ER -
%0 Journal Article %A I. S. Drokin %T About an algorithm for consistent weights initialization of deep neural networks and neural networks ensemble learning %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2016 %P 66-74 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2016_4_a5/ %G ru %F VSPUI_2016_4_a5
I. S. Drokin. About an algorithm for consistent weights initialization of deep neural networks and neural networks ensemble learning. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2016), pp. 66-74. http://geodesic.mathdoc.fr/item/VSPUI_2016_4_a5/
[1] Raina R., Battle A., Lee H., Packer B., Ng A. Y., “Selftaught learning: Transfer learning from unlabeled data”, Proc. of the 24th Intern. conference on machine learning (2007, June 20–24), 759–766
[2] Hinton G. E., Salakhutdinov R. R., “Reducing the dimensionality of data with Neural Networks”, Science, 313:5786 (2006), 504–507 | DOI | MR | Zbl
[3] Vincent P., Larochelle H., Lajoie I., Bengio Y., Manzagol P.-A., “Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion”, The Journal of Machine Learning Research archive, 11 (2010), 3371–3408 | MR | Zbl
[4] Masci J., Meier U., Ciresan D., Schmidhuber J., “Stacked convolutional auto-encoders for hierarchical feature extraction”, 21st Intern. conference on Artificial Neural Networks (Espoo, Finland, 2011, June 14–17), v. I, 52–59
[5] Gehring J., Miao Y., Metze F., Waibel A., “Extracting deep bottleneck features using stacked auto-encoders”, Acoustics, speech and signal processing, IEEE Intern. conference ICASSP (2013), 3377–3381
[6] Baldi P., Hornik K., “Neural Networks and principal component analysis: learning from examples without local minima”, Neural Networks, 2 (1989), 53–58 | DOI
[7] Caruana R., “Multitask learning”, Machine learning, 28 (1997), 41–75 | DOI
[8] UFDL, (data obrascheniya: 19.04.2016) http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial
[9] Ciresan D. C., Meier U., Schmidhuber J., “Transfer learning for Latin and Chinese characters with deep Neural Networks”, The 2012 Intern. joint conference on Neural Networks (IJCNN) (2012), 1–6
[10] CIFAR, (data obrascheniya: 19.04.2016) http://www.cs.toronto.edu/k̃riz/cifar.html
[11] Rolfe J. T., LeCun Y., “Discriminative recurrent sparse auto-encoders”, The Intern. conference on learning representations (2013)
[12] Masci J., Meier U., Cires D. Vëan, Schmidhuber J., “Stacked convolutional auto-encoders for hierarchical feature extraction”, Intern. conference artificial Neural Networks and machine learning (2011), 52–59
[13] Glorot X., Bengio Y., “Understanding the difficulty of training deep feedforward neural networks”, Intern. conference on artificial intelligence and statistics (2010), 249–256
[14] Pascanu R., Mikolov T., Bengio Y., Understanding the exploding gradient problem, Tech. Rep., Universite de Montreal, Montreal, 2012, 11 pp.