@article{VSPUI_2016_4_a4,
author = {N. S. Grigoreva},
title = {Scheduling problem to minimize the maximum lateness for parallel processors},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {51--65},
year = {2016},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2016_4_a4/}
}
TY - JOUR AU - N. S. Grigoreva TI - Scheduling problem to minimize the maximum lateness for parallel processors JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2016 SP - 51 EP - 65 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2016_4_a4/ LA - ru ID - VSPUI_2016_4_a4 ER -
%0 Journal Article %A N. S. Grigoreva %T Scheduling problem to minimize the maximum lateness for parallel processors %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2016 %P 51-65 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2016_4_a4/ %G ru %F VSPUI_2016_4_a4
N. S. Grigoreva. Scheduling problem to minimize the maximum lateness for parallel processors. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2016), pp. 51-65. http://geodesic.mathdoc.fr/item/VSPUI_2016_4_a4/
[1] Brucker P., Scheduling algorithms, Springer, Heidelberg, 2007, 378 pp. | MR | Zbl
[2] Graham R. L., Lawner E. L., Kan R., “Optimization and approximation in deterministic sequencing and scheduling: A survey”, Ann. of Disc. Math., 5:10 (1979), 287–326 | DOI | MR | Zbl
[3] Lenstra J. A., Kan R., Brucker P., “Complexity of machine scheduling problems”, Ann. of Disc. Math., 1 (1977), 343–362 | DOI | MR | Zbl
[4] Brucker P., Garey M. R., Johnson D. S., “Scheduling equal-length tasks under tree-like precendence constraints to minimize maximum lateness”, Matematics of Operations Research, 1977, no. 2, 275–284 | DOI | Zbl
[5] Zinder Y., Singh G., “Preemptive scheduling on parallel processors with due dates”, Asia Pacific Journal of Operational Research, 22 (2005), 445–462 | DOI | MR | Zbl
[6] Baker K. R., Introduction to Sequencing and Scheduling, John Wiley Son, New York, 1974, 318 pp.
[7] Kanet J. J., Sridharan V., “Scheduling with inserted idle time: problem taxonomy and literature review”, Operations Research, 48:1 (2000), 99–100 | DOI | MR
[8] Carlier J., “The one-machine sequencing problem”, European J. Oper. Res., 11:1 (1982), 42–47 | DOI | MR | Zbl
[9] Grigoreva N. S., “Branch and bound algorithm for multiprocessor scheduling problem”, Vestnik of Saint Petersburg University. Series 10. Applied mathematics. Comruter science. Control processes, 2009, no. 1, 44–55 (In Russian)
[10] Grigoreva N. S., “Multiprocessor scheduling with inserted idle time to minimize the maximum lateness”, Proceedings of the 7th Multidisciplinary Intern. Conference of Scheduling: Theory and Applications, MISTA, Prague, 2015, 814–816
[11] Gusfield D., “Bounds for naive multiple machine scheduling with release times and deadlines”, Journal of Algorithms, 5 (1984), 1–6 | DOI | MR | Zbl
[12] Romanovskii I. V., Khristova N. P., “The solution of minimax problem by the method of dichotomy”, Computational mathematics and mathematical physics, 13:5 (1973), 200–209 (In Russian)
[13] Mastrolilli M., “Efficient approximation schemes for scheduling problems with release dates and delivery times”, Journal of Scheduling, 6 (2003), 521–531 | DOI | MR | Zbl
[14] Fernandez E., Bussell B., “Bounds the number of processors and time for multiprocessor optimal schedules”, IEEE Trans. on Computers, 4:11 (1973), 745–751 | DOI | MR