Looking forward approach in cooperative differential games with infinite-horizon
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2016), pp. 18-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A novel approach to definition and computation of a solution of a differential with an infinite-horizon game is presented for the case when players do not have certain information about the game structure on the infinite time interval. At any instant of time players have certain information about motion equations and payoff functions on a subinterval with fixed duration. The information about the game structure updates at fixed instants of time and is completely unknown in advance. A new solution is defined as a recursive combination of sets of imputations in the truncated subgames that are analyzed by the Looking Forward Approach. An example of a resource extraction game illustrates a comparison of cooperative trajectory, imputation, imputation distribution procedure in the original game with infinite-horizon and in the corresponding game with Looking Forward Approach. Refs. 15. Figs 3.
Keywords: differential game, looking forward approach, imputation distribution procedure, time-consistency, strong time-consistency.
@article{VSPUI_2016_4_a1,
     author = {O. L. Petrosyan},
     title = {Looking forward approach in cooperative differential games with infinite-horizon},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {18--30},
     year = {2016},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2016_4_a1/}
}
TY  - JOUR
AU  - O. L. Petrosyan
TI  - Looking forward approach in cooperative differential games with infinite-horizon
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2016
SP  - 18
EP  - 30
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2016_4_a1/
LA  - ru
ID  - VSPUI_2016_4_a1
ER  - 
%0 Journal Article
%A O. L. Petrosyan
%T Looking forward approach in cooperative differential games with infinite-horizon
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2016
%P 18-30
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2016_4_a1/
%G ru
%F VSPUI_2016_4_a1
O. L. Petrosyan. Looking forward approach in cooperative differential games with infinite-horizon. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2016), pp. 18-30. http://geodesic.mathdoc.fr/item/VSPUI_2016_4_a1/

[1] Haurie A., “A note on nonzero-sum differential games with bargaining solutions”, Journal of Optimization Theory and Applications, 18:1 (1976), 31–39 | DOI | MR | Zbl

[2] Petrosyan L. A., “Time-consistency of solutions in multi-player differential games”, Vestnik of Leningrad State University. Series 1. Mathematics. Mechanics. Astronomy, 1977, no. 4, 46–52 (In Russian)

[3] Petrosyan L. A., “Strongly time-consistent differential optimality principles”, Vestnik of Leningrad State University. Series 1. Mathematics. Mechanics. Astronomy, 1993, no. 4, 35–40 (In Russian)

[4] Petrosyan L. A., Danilov N. N., “Stability of solutions in non-zero sum differential games with transferable payoffs”, Vestnik of Leningrad State University. Series 1. Mathematics. Mechanics. Astronomy, 1979, no. 1, 52–59 (In Russian)

[5] Petrosian O. L., “Looking forward approach in cooperative differential games”, Intern. Game Theory Review, 18:2 (2016), 1–14 | DOI | MR

[6] Petrosian O. L., Barabanov A. E., “Looking forward approach in cooperative differential games with uncertain-stochastic dynamics”, Journal of Optimization Theory and Applications, 2016, 1–20 | DOI | MR

[7] Bellman R., Dynamic programming, Princeton University Press, Princeton, 1957, 550 pp. | MR | Zbl

[8] Gromova E. V., Petrosian O. L., “Control of informational horizon for cooperative differential game of pollution control”, 2016 Intern. conference stability and oscillations of nonlinear control systems (Pyatnitskiy's conference) (2016) | DOI

[9] Petrosyan L. A., Zaccour G., “Time-consistent Shapley value allocation of pollution cost reduction”, J. econ. dyn. control., 27:3 (2003), 381–398 | DOI | MR

[10] Petrosyan L. A., Yeung D. W. K., “Dynamically stable solutions in randomly-furcating differential games”, Trans. Steklov inst. math., 253:1 (2006), 208–220 | MR

[11] Jorgensen S., Martin-Herran G., Zaccour G., “Agreeability and time consistency in linear-state differential games”, Journal of Optimization Theory and Applications, 119:1 (2003), 49–63 | DOI | MR | Zbl

[12] Petrosjan L. A., “Strongly time-consistent differential optimality principles”, Vestnik of Saint Petersburg University. Series 1. Mathematics. Mechanics. Astronomy, 1993, no. 4, 40–46 | MR

[13] Yeung D. W. K., Petrosyan L. A., Subgame-consistent economic optimization, Springer, New York, 2012, 395 pp. | MR

[14] Basar T., Olsder G. J., Dynamic noncooperative game theory, Academic Press, London, 1995, 535 pp. | MR | Zbl

[15] Jorgensen S., Yeung D. W. K., “Inter- and intergenerational renewable resource extraction”, Annals of Operations Research, 88 (1999), 275–289 | DOI | MR | Zbl