@article{VSPUI_2016_3_a9,
author = {A. V. Fominykh},
title = {The hypodifferential descent method in the problem of constructing an optimal control},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {106--125},
year = {2016},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2016_3_a9/}
}
TY - JOUR AU - A. V. Fominykh TI - The hypodifferential descent method in the problem of constructing an optimal control JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2016 SP - 106 EP - 125 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSPUI_2016_3_a9/ LA - en ID - VSPUI_2016_3_a9 ER -
%0 Journal Article %A A. V. Fominykh %T The hypodifferential descent method in the problem of constructing an optimal control %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2016 %P 106-125 %N 3 %U http://geodesic.mathdoc.fr/item/VSPUI_2016_3_a9/ %G en %F VSPUI_2016_3_a9
A. V. Fominykh. The hypodifferential descent method in the problem of constructing an optimal control. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2016), pp. 106-125. http://geodesic.mathdoc.fr/item/VSPUI_2016_3_a9/
[1] Karelin V. V., “Penalty functions in a control problem”, Automation and Remote Control, 2004, no. 3, 483–492 | DOI | MR | Zbl
[2] Demyanov V. F., Giannessi F., Karelin V. V., “Optimal control problems via exact penalty functions”, Journal of Global Optimization, 12 (1998), 215–223 | DOI | MR | Zbl
[3] Baranov A. Y., Khazarinov Y. F., Khomenuk V. V., “Gradient optimization methods of nonlinear systems of automatic control”, Proc. “Applied Tasks of Technical Cybernetics” (1966), 307–316
[4] Kelly H. J., “Gradient theory of optimal flight paths”, ARS Journal, 30:10 (1960), 947–954 | DOI
[5] Kelly H. J., “Method of gradients”, Optimiz. techn. applic. aerospace syst., Acad. Press, New York–London, 1962, 205–254 | DOI | MR
[6] Moiseev N. N., Elements of the theory of optimal systems, Nauka Publ., M., 1975, 528 pp. (In Russian) | MR | Zbl
[7] Egorov A. I., Basics of the control theory, Fizmatlit Publ., M., 2004, 504 pp. (In Russian) | MR
[8] Antipin A. S., Khoroshilova E. V., “Linear programming and dynamics”, Proc. of the Institute of Mathematics and Mechanic UrO RAS, 19, no. 2, 2013, 7–25 | MR
[9] Demyanov V. F., Rubinov A. M., Approximate methods of solving extremal problems, Leningrad University Publ., L., 1968, 178 pp. (In Russian)
[10] Tamasyan G. Sh., “Numerical methods in problems of calculus of variations for functionals depending on higher order derivatives”, Journal of Mathematical Sciences, 188:3 (2013), 299–321 | DOI | MR | Zbl
[11] Demyanov V. F., Rubinov A. M., Basics of nonsmooth analysis and quasidifferentiable optimization, Nauka Publ., M., 1990, 432 pp. (In Russian) | MR
[12] Daugavet V. A., Numerical methods of quadratic programming, Saint Petersburg State University Publ. House, Saint Petersburg, 2001, 128 pp. (In Russian)
[13] Krasovskij N. N., Motion control theory, Nauka Publ., M., 1968, 476 pp. (In Russian) | Zbl
[14] Kumar V., “A control averaging technique for solving a class of singular optimal control problems”, Intern. J. Control, 23:3 (1976), 361–380 | DOI | Zbl
[15] Srochko V. A., Khamidulin R. G., “The method of successive approximations in optimal control problems with boundary conditions”, USSR Computational Mathematics and Mathematical Physics, 188:2 (1986), 113–122 | DOI | MR
[16] Evtushenko Yu. G., Methods for solving extreme problems and their application to systems of optimization, Nauka Publ., M., 1982, 432 pp. (In Russian) | MR