On the molecular mathematical model of skeletal muscle reduction
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2016), pp. 87-96 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

All muscle contraction occurs as a result of signals in the form of the nervous impulses. The muscle fiber tension generales at first isometric and next isotonic contractions. In isometric contraction the muscle remains the same length. In isotonic contraction the tension in the muscle remains constant. In reality more complex contractions (isovelocity, concentric and eccentric) occur. However the cancelable mechanism will be identical. In the sliding filament theory it is a process of repetitive events that cause a thin filament (protein actin) to slide over a thick filament (protein myosin) and generate tension in the muscle. Briefly the mechanism of muscle contraction is as follows. The ATP molecules to activate the myosin head on the thick filament. An action potential arrives across the neuromuscular synapse to the muscle membrane. This depolarization results in an increase in cytoplasm calcium. This calcium to release calcium out the sarcoplasmic reticulum. The calcium ions to activate the binding cites on the thin filament. As a result of the ferment reaction take place hydrolyzes the ATP and the release of inorganic phosphate. In the article the standard problem of the sarcomere in the cause of the length-tension curve is constructed. The equilibrium solutions of the kinetic equations for the two models of muscle contraction are obtained. The mitochondrial phosphorylation of ADP is a complex process of cellular respiration. In this article only one fragment for the electron transport chain is considered. Refs 11.
Keywords: skeletal muscle, muscle contraction, molecular mathematical model, kinetic equations, mitochondrial phospholation.
@article{VSPUI_2016_3_a7,
     author = {V. S. Novoselov},
     title = {On the molecular mathematical model of skeletal muscle reduction},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {87--96},
     year = {2016},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2016_3_a7/}
}
TY  - JOUR
AU  - V. S. Novoselov
TI  - On the molecular mathematical model of skeletal muscle reduction
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2016
SP  - 87
EP  - 96
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2016_3_a7/
LA  - ru
ID  - VSPUI_2016_3_a7
ER  - 
%0 Journal Article
%A V. S. Novoselov
%T On the molecular mathematical model of skeletal muscle reduction
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2016
%P 87-96
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2016_3_a7/
%G ru
%F VSPUI_2016_3_a7
V. S. Novoselov. On the molecular mathematical model of skeletal muscle reduction. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2016), pp. 87-96. http://geodesic.mathdoc.fr/item/VSPUI_2016_3_a7/

[1] Hill A. V., First and last experiments in muscle mechanics, University Press, Cambridge–New York, 1970, 144 pp.

[2] Volkenshteyn M. V., Biophisics, Nauka Publ., M., 1981, 576 pp. (In Russian)

[3] Bagshau C. R., Muscle contraction, Springer Press, New York, 1982, 128 pp.

[4] Biological Encyclopedic Dictionary, Sov. encyclopedia Publ., M., 1989, 863 pp. (In Russian)

[5] Barkinblit M., Gerdyaev A., Tarasova A., Human and animal physiology objectives, MIROS Publ., M., 1995, 176 pp. (In Russian)

[6] Keener J., Sneyd J., “Mathematical physiology”, Interdisciplinary Applied Mathematics, 8 (1998), 727–737 | MR

[7] Rubin A. B., Biophisics, Moscow State University Publ., M., 2004, 469 pp. (In Russian)

[8] Novoselov V. S., Korolev V. S., “Model muscle excitation”, SICPRO-05, IPU RAN Publ., M., 2005, 367–374 (In Russian)

[9] Novoselov V. S., Statistical dinamics, Saint Petersburg University Publ., Saint Petersburg, 2009, 393 pp. (In Russian)

[10] Novoselov V. S., “A mathematical model of excitation of the heart cells”, Vestnik of Saint Petersburg University. Series 10. Applied mathematics. Computer science. Control processes, 2013, no. 3, 58–66 (In Russian)

[11] Davydov A. S., “Non-linear Biophisics”, Mathematical modeling. Processes in non-linear environments, Nauka Publ., M., 1986, 223–260 (In Russian) | Zbl