Interaction of an elliptic hole with an interface of two bonded half-planes
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2016), pp. 73-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problems of elasticity for composite materials with the holes and inclusions have a great practical significance for mechanics, physics and other fields of science. The analytic solution of a plane problem (plane strain or plane stress) for a bi-material plate with elliptic hole is obtained. A hole is located entirely in the lower half-plane. The stresses and the angles of rotation are given at infinity, on the boundary of the hole where an external load is applied. The methods of Kolosov–Muskhelishvili complex potentials, conformal mapping and superposition were used for solution to the problem. The affinity of a hole to an interface makes essential influence on value of stresses in a vicinity of a hole and also on value of stresses at an interface. For engineering applications it is important to know the fields of the stresses and displacements so as to estimate influence of a hole on strength of bonding. Special cases of these problems follow the solutions of problems on an elliptic hole in a half-plane, about an inclined crack in a bi-material plane and half-plane and a some others. Refs 19. Figs 2.
Keywords: bi-material plate, plane problem elasticity, elliptic hole, method of complex functions.
@article{VSPUI_2016_3_a6,
     author = {V. M. Malkov and Yu. V. Malkova and R. R. Petrukhin},
     title = {Interaction of an elliptic hole with an interface of two bonded half-planes},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {73--87},
     year = {2016},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2016_3_a6/}
}
TY  - JOUR
AU  - V. M. Malkov
AU  - Yu. V. Malkova
AU  - R. R. Petrukhin
TI  - Interaction of an elliptic hole with an interface of two bonded half-planes
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2016
SP  - 73
EP  - 87
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2016_3_a6/
LA  - ru
ID  - VSPUI_2016_3_a6
ER  - 
%0 Journal Article
%A V. M. Malkov
%A Yu. V. Malkova
%A R. R. Petrukhin
%T Interaction of an elliptic hole with an interface of two bonded half-planes
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2016
%P 73-87
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2016_3_a6/
%G ru
%F VSPUI_2016_3_a6
V. M. Malkov; Yu. V. Malkova; R. R. Petrukhin. Interaction of an elliptic hole with an interface of two bonded half-planes. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2016), pp. 73-87. http://geodesic.mathdoc.fr/item/VSPUI_2016_3_a6/

[1] Craciun E. M., Barbu L., “Compact closed form solution of the incremental plane states in a prestressed elastic composite with an elliptical hole”, Zeitschrift fur Angewandte Mathematik und Mechanik (ZAMM), 95 (2015), 193–199 | DOI | MR | Zbl

[2] Wang X.-F., Xing F., Hasebe N., Prasad P. B. N., “A point dislocation interacting with an elliptical hole located at a Bi-material interface”, Appl. Mechanics and Materials, 151 (2012), 75–79 | DOI

[3] Mogilevskaya S. G., Crouch S. L., “A Galerkin boundary integral method for multiple circular elastic inclusions”, Intern. J. for Numerical Methods in Eng., 52 (2001), 1069–1106 | DOI | Zbl

[4] Wang J., Crouch S. L., Mogilevskaya S. G., “A complex boundary integral method for multiple circular holes in an infinite plane”, Eng. Anal. with Boundary Elements, 27 (2003), 789–802 | DOI | Zbl

[5] Dejoie A., Mogilevskaya S. G., Crouch S. L., “A boundary integral method for multiple circular holes in an elastic half-plane”, Eng. Anal. with Boundary Elements, 30 (2006), 450–464 | DOI | Zbl

[6] Verruijt A., “A complex variable solution for a deforming circular tunnel in an elastic half-plane”, Intern. J. for Numerical and Analytical Methods in Geomechanics, 21 (1997), 77–89 | 3.0.CO;2-M class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[7] Verruijt A., “Deformations of an elastic half plane with a circular cavity”, Intern. J. Solids and Structures, 35 (1998), 2795–2804 | DOI | Zbl

[8] Kooi C. B., Verruijt A., “Interaction of circular holes in an infinite elastic medium”, Tunneling and Underground Space Technology, 16 (2001), 59–62 | DOI

[9] Wang X.-F., Hasebe N., “Green's function of a point dislocation for the bending of a composite infinite plate with an elliptical hole at interface”, Archive of Appl. Mechanics, 71 (2001), 233–248 | DOI | Zbl

[10] Ukadgaonker V. G., Awasare P. J., “Interaction effect of rectangular hole and arbitrarily oriented elliptical hole or crack in infinite plate subjected to uniform tensile loading at infinity”, Indian J. Eng. and Materials Sciences, 6 (1999), 125–134

[11] Okumura M., Hasebe N., Nakamura T., “Bimaterial plane with elliptic hole under uniform tension normal to the interface”, Intern. J. Fracture, 71 (1995), 293–310 | DOI

[12] Sun Y.-F., Peng Y.-Z., “Analytic solutions for the problems of an inclusion of arbitrary shape embedded in a half-plane”, Appl. Math. and Computation, 140 (2003), 105–113 | DOI | MR | Zbl

[13] Malkova Yu. V., Some problems for bi-material plane with curvilinear cracks, Saint Petersburg State University Publ., Saint Petersburg, 2008, 160 pp. (In Russian)

[14] N. I. Muskhelishvili, Some basic problems of mathematical theory of elasticity, Nauka, M., 1966, 708 pp. (In Russian)

[15] Grekov M. A., “A slightly curved crack near the interface in dissimilar materials”, Vestnik of Saint Petersburg University. Series 1. Mathematics. Mechanics. Astronomy, 2008, no. 1, 93–101 (In Russian)

[16] Malkov V. M., Malkova Yu. V., “A circular arc crack near to an interface”, Vestnik of Saint Petersburg University. Series 1. Mathematics. Mechanics. Astronomy, 2010, no. 1, 93–104 (In Russian)

[17] Malkov V. M., Malkova Yu. V., Ivanov V. A., “Infinite plane with circular inclusion debonding on part interface”, Vestnik of Saint Petersburg University. Series 10. Applied mathematics. Computer science. Control processes, 2009, no. 4, 152–166 (In Russian)

[18] Malkov V. M., Malkova Yu. V., “Deformation of bi-material plane with elliptic hole”, 2nd Intern. Conf. on Emission Electronics (ICEE) (2014), 1–5 (accessed: 19.05.2016) http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6893967&newsearch=true&queryText=Deformation of bi-material plane with elliptic hole | DOI

[19] Malkov V. M., Malkova Yu. V., “The state of stress of bi-material plate with an elliptic hole”, Intern. Conf. on Mechanics — Seventh Polyakhov's Reading (2015), 1–4 (accessed: 19.05.2016) http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7106753&newsearch=true&queryText=The state of stress of bi-material plate with an elliptic hole | DOI