@article{VSPUI_2016_3_a6,
author = {V. M. Malkov and Yu. V. Malkova and R. R. Petrukhin},
title = {Interaction of an elliptic hole with an interface of two bonded half-planes},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {73--87},
year = {2016},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2016_3_a6/}
}
TY - JOUR AU - V. M. Malkov AU - Yu. V. Malkova AU - R. R. Petrukhin TI - Interaction of an elliptic hole with an interface of two bonded half-planes JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2016 SP - 73 EP - 87 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSPUI_2016_3_a6/ LA - ru ID - VSPUI_2016_3_a6 ER -
%0 Journal Article %A V. M. Malkov %A Yu. V. Malkova %A R. R. Petrukhin %T Interaction of an elliptic hole with an interface of two bonded half-planes %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2016 %P 73-87 %N 3 %U http://geodesic.mathdoc.fr/item/VSPUI_2016_3_a6/ %G ru %F VSPUI_2016_3_a6
V. M. Malkov; Yu. V. Malkova; R. R. Petrukhin. Interaction of an elliptic hole with an interface of two bonded half-planes. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2016), pp. 73-87. http://geodesic.mathdoc.fr/item/VSPUI_2016_3_a6/
[1] Craciun E. M., Barbu L., “Compact closed form solution of the incremental plane states in a prestressed elastic composite with an elliptical hole”, Zeitschrift fur Angewandte Mathematik und Mechanik (ZAMM), 95 (2015), 193–199 | DOI | MR | Zbl
[2] Wang X.-F., Xing F., Hasebe N., Prasad P. B. N., “A point dislocation interacting with an elliptical hole located at a Bi-material interface”, Appl. Mechanics and Materials, 151 (2012), 75–79 | DOI
[3] Mogilevskaya S. G., Crouch S. L., “A Galerkin boundary integral method for multiple circular elastic inclusions”, Intern. J. for Numerical Methods in Eng., 52 (2001), 1069–1106 | DOI | Zbl
[4] Wang J., Crouch S. L., Mogilevskaya S. G., “A complex boundary integral method for multiple circular holes in an infinite plane”, Eng. Anal. with Boundary Elements, 27 (2003), 789–802 | DOI | Zbl
[5] Dejoie A., Mogilevskaya S. G., Crouch S. L., “A boundary integral method for multiple circular holes in an elastic half-plane”, Eng. Anal. with Boundary Elements, 30 (2006), 450–464 | DOI | Zbl
[6] Verruijt A., “A complex variable solution for a deforming circular tunnel in an elastic half-plane”, Intern. J. for Numerical and Analytical Methods in Geomechanics, 21 (1997), 77–89 | 3.0.CO;2-M class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl
[7] Verruijt A., “Deformations of an elastic half plane with a circular cavity”, Intern. J. Solids and Structures, 35 (1998), 2795–2804 | DOI | Zbl
[8] Kooi C. B., Verruijt A., “Interaction of circular holes in an infinite elastic medium”, Tunneling and Underground Space Technology, 16 (2001), 59–62 | DOI
[9] Wang X.-F., Hasebe N., “Green's function of a point dislocation for the bending of a composite infinite plate with an elliptical hole at interface”, Archive of Appl. Mechanics, 71 (2001), 233–248 | DOI | Zbl
[10] Ukadgaonker V. G., Awasare P. J., “Interaction effect of rectangular hole and arbitrarily oriented elliptical hole or crack in infinite plate subjected to uniform tensile loading at infinity”, Indian J. Eng. and Materials Sciences, 6 (1999), 125–134
[11] Okumura M., Hasebe N., Nakamura T., “Bimaterial plane with elliptic hole under uniform tension normal to the interface”, Intern. J. Fracture, 71 (1995), 293–310 | DOI
[12] Sun Y.-F., Peng Y.-Z., “Analytic solutions for the problems of an inclusion of arbitrary shape embedded in a half-plane”, Appl. Math. and Computation, 140 (2003), 105–113 | DOI | MR | Zbl
[13] Malkova Yu. V., Some problems for bi-material plane with curvilinear cracks, Saint Petersburg State University Publ., Saint Petersburg, 2008, 160 pp. (In Russian)
[14] N. I. Muskhelishvili, Some basic problems of mathematical theory of elasticity, Nauka, M., 1966, 708 pp. (In Russian)
[15] Grekov M. A., “A slightly curved crack near the interface in dissimilar materials”, Vestnik of Saint Petersburg University. Series 1. Mathematics. Mechanics. Astronomy, 2008, no. 1, 93–101 (In Russian)
[16] Malkov V. M., Malkova Yu. V., “A circular arc crack near to an interface”, Vestnik of Saint Petersburg University. Series 1. Mathematics. Mechanics. Astronomy, 2010, no. 1, 93–104 (In Russian)
[17] Malkov V. M., Malkova Yu. V., Ivanov V. A., “Infinite plane with circular inclusion debonding on part interface”, Vestnik of Saint Petersburg University. Series 10. Applied mathematics. Computer science. Control processes, 2009, no. 4, 152–166 (In Russian)
[18] Malkov V. M., Malkova Yu. V., “Deformation of bi-material plane with elliptic hole”, 2nd Intern. Conf. on Emission Electronics (ICEE) (2014), 1–5 (accessed: 19.05.2016) http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6893967&newsearch=true&queryText=Deformation of bi-material plane with elliptic hole | DOI
[19] Malkov V. M., Malkova Yu. V., “The state of stress of bi-material plate with an elliptic hole”, Intern. Conf. on Mechanics — Seventh Polyakhov's Reading (2015), 1–4 (accessed: 19.05.2016) http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7106753&newsearch=true&queryText=The state of stress of bi-material plate with an elliptic hole | DOI