Mots-clés : Liouville equation, Vlasov equation
@article{VSPUI_2016_3_a3,
author = {O. I. Drivotin},
title = {Covariant description of phase space distributions},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {39--52},
year = {2016},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2016_3_a3/}
}
TY - JOUR AU - O. I. Drivotin TI - Covariant description of phase space distributions JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2016 SP - 39 EP - 52 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSPUI_2016_3_a3/ LA - en ID - VSPUI_2016_3_a3 ER -
O. I. Drivotin. Covariant description of phase space distributions. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2016), pp. 39-52. http://geodesic.mathdoc.fr/item/VSPUI_2016_3_a3/
[1] Liboff R. L., Introduction to the Theory of Kinetic Equations, John Wiley and Sons Publ., New York, 1969, 397 pp. | Zbl
[2] De Groot S. R., van Leeuwen W. A., van Weert Ch. G., Relativistic Kinetic Theory, North Holland Publ. Comp., Amsterdam, 1980, 417 pp. | MR
[3] Drivotin O. I., “Covariant Formulation of the Vlasov Equation”, Proc. IPAC'2011 (San-Sebastian, Spain, 2011) (accessed: 20.05.2016) http://accelconf.web.cern.ch/accelconf/IPAC2011/papers/wepc114.pdf
[4] Drivotin O. I., “Degenerate Solutions of the Vlasov Equation”, Proc. RUPAC'2012 (Saint Petersburg, Russia, 2012) (accessed: 20.05.2016) http://accelconf.web.cern.ch/accelconf/rupac2012/papers/tuppb028.pdf
[5] Holm D., Marsden J., Ratiu T., “The Euler–Poincare Equations and Semidirect Products with Applications to Continuum Theories”, Adv. Math., 137 (1998), 1–81 | DOI | MR | Zbl
[6] Gibbons J., Holm D. D., Tronci C., “Vlasov moments, integrable systems and singular solutions”, Phys. Lett. A, 372 (2008), 1024–1033 | DOI | MR | Zbl
[7] Squire J., Quin H., Tang W. M., Chandre C., “The Hamiltonian Structure and Euler-Poincare formulation of the Vlasov–Maxwell and gyrokinetic systems”, Phys. Plasmas, 20 (2013), 022501 | DOI
[8] Drivotin O. I., Ovsyannikov D. A., “Determination of the Stationary Solutions of the Vlasov Equation for an Axially Symmetric Beam of Charged Particles in a Longitudinal Magnetic Field”, USSR Comput. Maths. Math. Phys., 27 (1987), 62–70 | DOI
[9] Drivotin O. I., Ovsyannikov D. A., “New Classes of Stationary Solutions of Vlasov's Equation for an Axially Symmetrical Beam of Charged Particles of Constant Density”, USSR Comput. Maths. Math. Phys., 29 (1989), 195–199 | DOI | MR
[10] Drivotin O. I., Ovsyannikov D. A., “On Self-Consistent Distributions for a Charged Partice Beam in a Longitudinal Magnetic Field”, Dokl. Phys., 39 (1994), 1–4 | MR | Zbl
[11] Drivotin O. I., Ovsyannikov D. A., “New Classes of Uniform Distributions for Charged Particles in Magnetic Field”, Proc. PAC'97 (Vancouver, Canada, 1998), 1943–1945
[12] Drivotin O. I., Ovsyannikov D. A., “Self-Consistent Distributions of Charged Particles in Longitudinal Magnetic Field. I”, Vestnik of Saint Petersburg University. Series 10. Applied mathematics. Computer science. Control processes, 2004, no. 1, 3–15 (In Russian)
[13] Drivotin O. I., Ovsyannikov D. A., “Self-Consistent Distributions of Charged Particles in Longitudinal Magnetic Field. II”, Vestnik of Saint Petersburg University. Series 10. Applied mathematics. Computer science. Control processes, 2004, no. 2, 70–81 (In Russian)
[14] Drivotin O. I., Ovsyannikov D. A., “Modeling of Self-Consistent Distributions for Longitudinally Non-Uniform Beam”, Nucl. Instr. Meth. Phys. Res., A 558 (2006), 112–118 | DOI
[15] Drivotin O. I., Ovsyannikov D. A., “Self-Consistent Distributions for Charged Particle Beam in Magnetic Field”, Intern. J. Modern Phys. A, 24 (2009), 816–842 | DOI | Zbl
[16] Brillouin L., “A Theorem of Larmor and Its Importance for Electrons in Magnetic Fields”, Phys. Rev., 67 (1945), 260–266 | DOI
[17] Kapchinsky I., Theory of Resonance Linear Accelerators, Harwood Academic Press, New York, 1985, 398 pp.
[18] Arnowitt R., Deser S., Misner C. W., “The Dynamics of General Relativity”, Gravitation: An Introduction to Current Research, ed. L. Witten, Wiley Press, New York, 1962, 227–264 | MR
[19] Dirac P. A. M., “Fixation of Coordinates in the Hamiltonian Theory of Gravitation”, Phys. Rev., 114 (1958), 924–930 | DOI | MR
[20] Gourgoulhon E., 3+1 Formalism in General Relativity, Springer Press, Berlin, 2012, 294 pp. | MR | Zbl
[21] Godbillon C., Differential Geometry and Analytical Mechanics, Hermann Press, Paris, 1969, 183 pp.
[22] Drivotin O. I., Reference Frames in Classical and Relativistic Physics, arXiv: (accessed: 20.05.2016) 1403.1787
[23] Drivotin O. I., “Rigorous Definition of the Reference Frame”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2014, no. 4, 25–36
[24] Drivotin O. I., Mathematical Foundations of the Field Theory, Saint Petersburg State University Publ., Saint Petersburg, 2010, 168 pp. (In Russian)
[25] Drivotin O. I., Starikov D. A., “Second Order Method for Beam Dynamics Optimization”, Proc. RUPAC'2014 (Obninsk, Russia, 2014) (accessed: 20.05.2016) http://accelconf.web.cern.ch/accelconf/rupac2014/papers/tupsa15.pdf