Covariant description of phase space distributions
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2016), pp. 39-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The concept of phase space for particles moving in the 4-dimensional space time is formulated. Definition of particle distribution density as differential form is given. The degree of the distribution density form may be different in various cases. The Liouville and the Vlasov equations are written in tensor form with use of such tensor operations as the Lie dragging and the Lie derivative. The presented approach is valid in both non-relativistic and relativistic cases. It should be emphasized that this approach does not include the concepts of phase volume and distribution function. The covariant approach allows using arbitrary systems of coordinates for description of the particle distribution. In some cases, making use of special coordinates grants the possibility to construct analytical solutions. Besides, such an approach is convenient for description of degenerate distributions, for example, of the Kapchinsky–Vladimirsky distribution, which is well-known in the theory of charged particle beams. It can be also applied for description of particle distributions in curved space time. Refs 25.
Keywords: phase space, phase density, particle distribution density, self-consistent distribution, degenerate distribution.
Mots-clés : Liouville equation, Vlasov equation
@article{VSPUI_2016_3_a3,
     author = {O. I. Drivotin},
     title = {Covariant description of phase space distributions},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {39--52},
     year = {2016},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2016_3_a3/}
}
TY  - JOUR
AU  - O. I. Drivotin
TI  - Covariant description of phase space distributions
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2016
SP  - 39
EP  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2016_3_a3/
LA  - en
ID  - VSPUI_2016_3_a3
ER  - 
%0 Journal Article
%A O. I. Drivotin
%T Covariant description of phase space distributions
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2016
%P 39-52
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2016_3_a3/
%G en
%F VSPUI_2016_3_a3
O. I. Drivotin. Covariant description of phase space distributions. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2016), pp. 39-52. http://geodesic.mathdoc.fr/item/VSPUI_2016_3_a3/

[1] Liboff R. L., Introduction to the Theory of Kinetic Equations, John Wiley and Sons Publ., New York, 1969, 397 pp. | Zbl

[2] De Groot S. R., van Leeuwen W. A., van Weert Ch. G., Relativistic Kinetic Theory, North Holland Publ. Comp., Amsterdam, 1980, 417 pp. | MR

[3] Drivotin O. I., “Covariant Formulation of the Vlasov Equation”, Proc. IPAC'2011 (San-Sebastian, Spain, 2011) (accessed: 20.05.2016) http://accelconf.web.cern.ch/accelconf/IPAC2011/papers/wepc114.pdf

[4] Drivotin O. I., “Degenerate Solutions of the Vlasov Equation”, Proc. RUPAC'2012 (Saint Petersburg, Russia, 2012) (accessed: 20.05.2016) http://accelconf.web.cern.ch/accelconf/rupac2012/papers/tuppb028.pdf

[5] Holm D., Marsden J., Ratiu T., “The Euler–Poincare Equations and Semidirect Products with Applications to Continuum Theories”, Adv. Math., 137 (1998), 1–81 | DOI | MR | Zbl

[6] Gibbons J., Holm D. D., Tronci C., “Vlasov moments, integrable systems and singular solutions”, Phys. Lett. A, 372 (2008), 1024–1033 | DOI | MR | Zbl

[7] Squire J., Quin H., Tang W. M., Chandre C., “The Hamiltonian Structure and Euler-Poincare formulation of the Vlasov–Maxwell and gyrokinetic systems”, Phys. Plasmas, 20 (2013), 022501 | DOI

[8] Drivotin O. I., Ovsyannikov D. A., “Determination of the Stationary Solutions of the Vlasov Equation for an Axially Symmetric Beam of Charged Particles in a Longitudinal Magnetic Field”, USSR Comput. Maths. Math. Phys., 27 (1987), 62–70 | DOI

[9] Drivotin O. I., Ovsyannikov D. A., “New Classes of Stationary Solutions of Vlasov's Equation for an Axially Symmetrical Beam of Charged Particles of Constant Density”, USSR Comput. Maths. Math. Phys., 29 (1989), 195–199 | DOI | MR

[10] Drivotin O. I., Ovsyannikov D. A., “On Self-Consistent Distributions for a Charged Partice Beam in a Longitudinal Magnetic Field”, Dokl. Phys., 39 (1994), 1–4 | MR | Zbl

[11] Drivotin O. I., Ovsyannikov D. A., “New Classes of Uniform Distributions for Charged Particles in Magnetic Field”, Proc. PAC'97 (Vancouver, Canada, 1998), 1943–1945

[12] Drivotin O. I., Ovsyannikov D. A., “Self-Consistent Distributions of Charged Particles in Longitudinal Magnetic Field. I”, Vestnik of Saint Petersburg University. Series 10. Applied mathematics. Computer science. Control processes, 2004, no. 1, 3–15 (In Russian)

[13] Drivotin O. I., Ovsyannikov D. A., “Self-Consistent Distributions of Charged Particles in Longitudinal Magnetic Field. II”, Vestnik of Saint Petersburg University. Series 10. Applied mathematics. Computer science. Control processes, 2004, no. 2, 70–81 (In Russian)

[14] Drivotin O. I., Ovsyannikov D. A., “Modeling of Self-Consistent Distributions for Longitudinally Non-Uniform Beam”, Nucl. Instr. Meth. Phys. Res., A 558 (2006), 112–118 | DOI

[15] Drivotin O. I., Ovsyannikov D. A., “Self-Consistent Distributions for Charged Particle Beam in Magnetic Field”, Intern. J. Modern Phys. A, 24 (2009), 816–842 | DOI | Zbl

[16] Brillouin L., “A Theorem of Larmor and Its Importance for Electrons in Magnetic Fields”, Phys. Rev., 67 (1945), 260–266 | DOI

[17] Kapchinsky I., Theory of Resonance Linear Accelerators, Harwood Academic Press, New York, 1985, 398 pp.

[18] Arnowitt R., Deser S., Misner C. W., “The Dynamics of General Relativity”, Gravitation: An Introduction to Current Research, ed. L. Witten, Wiley Press, New York, 1962, 227–264 | MR

[19] Dirac P. A. M., “Fixation of Coordinates in the Hamiltonian Theory of Gravitation”, Phys. Rev., 114 (1958), 924–930 | DOI | MR

[20] Gourgoulhon E., 3+1 Formalism in General Relativity, Springer Press, Berlin, 2012, 294 pp. | MR | Zbl

[21] Godbillon C., Differential Geometry and Analytical Mechanics, Hermann Press, Paris, 1969, 183 pp.

[22] Drivotin O. I., Reference Frames in Classical and Relativistic Physics, arXiv: (accessed: 20.05.2016) 1403.1787

[23] Drivotin O. I., “Rigorous Definition of the Reference Frame”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2014, no. 4, 25–36

[24] Drivotin O. I., Mathematical Foundations of the Field Theory, Saint Petersburg State University Publ., Saint Petersburg, 2010, 168 pp. (In Russian)

[25] Drivotin O. I., Starikov D. A., “Second Order Method for Beam Dynamics Optimization”, Proc. RUPAC'2014 (Obninsk, Russia, 2014) (accessed: 20.05.2016) http://accelconf.web.cern.ch/accelconf/rupac2014/papers/tupsa15.pdf