On visualization of some thin shells and their stress-strain state
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2016), pp. 18-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Shells that are reinforced by ribs of variable height can reduce harmful stress concentrations for analysis of the stress-strain state of a stiffened structure it is necessary to know not only the greatest deflection and the maximum normal stress but also to gain a picture of the deflection and the stress intensity across the shell. Moreover, the construction of the field deflection of the shell from the surface structure (and not from a plane) can be more clearly reflect the deformation process. This can be achieved by developing special software for further practical use and that has a convenient graphical interface to provide the results of calculations in a user-friendly form. The purpose of this paper is to describe imaging of a mathematical model of the stress-strain state of thin-walled shell structures that are reinforced by ribs of variable height. The results that are described in this paper have been obtained using the developed software module, which can be used in the practice of calculating shell structures in their design, as well as in scientific research related to the problems of nonlinear deformation of thin-walled structures. The geometric shape of the shell is defined using Lame parameters, and the shell itself and its supporting ribs are imaged as a shell of step-variable thickness. The contact of rib and shell occurs on the band that more accurately reflects the actual work construction. Refs 16. Figs 9.
Keywords: thin shells, stability and strength of the shells, visualization of thin shells, reinforced shells, ribs of variable height.
@article{VSPUI_2016_3_a1,
     author = {A. V. Aseev and A. A. Makarov},
     title = {On visualization of some thin shells and their stress-strain state},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {18--31},
     year = {2016},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2016_3_a1/}
}
TY  - JOUR
AU  - A. V. Aseev
AU  - A. A. Makarov
TI  - On visualization of some thin shells and their stress-strain state
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2016
SP  - 18
EP  - 31
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2016_3_a1/
LA  - ru
ID  - VSPUI_2016_3_a1
ER  - 
%0 Journal Article
%A A. V. Aseev
%A A. A. Makarov
%T On visualization of some thin shells and their stress-strain state
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2016
%P 18-31
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2016_3_a1/
%G ru
%F VSPUI_2016_3_a1
A. V. Aseev; A. A. Makarov. On visualization of some thin shells and their stress-strain state. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2016), pp. 18-31. http://geodesic.mathdoc.fr/item/VSPUI_2016_3_a1/

[1] Kiendl J., Schmidt R., Wuchner R., Bletzinger K.-U., “Isogeometric shape optimization of shells using semi-analytical sensitivity analysis and sensitivity weighting”, Comput. Methods Appl. Mech. Eng., 274 (2014), 148–167 | DOI | MR | Zbl

[2] Makarov A. A., “Knot insertion and knot removal matrices for nonpolynomial splines”, Numerical methods and programming, 13 (2012), 74–86 (In Russian)

[3] Makarov A. A., “Calculation of the strength and stability of reinforced membranes and parallelization”, Abstracts of the conference of young scientists, 1, ITMO University Publ., Saint Petersburg, 2011, 272 (In Russian)

[4] Golovanov N. N., Il'yutko D. P., Nosovskij G. V., Fomenko A. T., Computational geometry, Academia Publ., M., 2006, 511 pp. (In Russian)

[5] Golovanov N. N., Geometric modeling, Academia Publ., M., 2011, 272 pp. (In Russian)

[6] Voloshinov D. V., “Using of geometric modeling for computer-aided design and research of complex technical surfaces”, St. Petersburg State Polytechnical University Journal, 2006, no. 44, 152–157 (In Russian)

[7] Filippov V. A., Basics of geometry of surfaces of shells of spatial structures, Fizmatlit Publ., M., 2009, 191 pp. (In Russian)

[8] Belyaeva Z. V., Mityushov E. A., “Geometric modeling of spatial structures”, Vestnik TSUAB, 2010, no. 1 (26), 53–63 (In Russian)

[9] Aseev A. V., Makarov A. A., “On visualisation of reinforced thin shell elements”, Computer Tools in Education, 2014, no. 2, 35–45 (In Russian) | MR

[10] Nguyen-Thanh N., Valizadeh N., Nguyen M. N., Nguyen-Xuan H., Zhuang X., Areias P., Zi G., Bazilevs Y., De Lorenzis L., Rabczuk T., “An extended isogeometric thin shell analysis based on Kirchhoff–Love theory”, Comput. Methods Appl. Mech. Eng., 284 (2015), 265–291 | DOI | MR

[11] Karpov V. V., The strength and stability of reinforced shells of revolution, v. 1, Models and algorithms for research of strength and stability of reinforced shells of revolution, Fizmatlit Publ., M., 2010, 288 pp. (In Russian)

[12] Aseev A. V., Makarov A. A., Semenov A. A., “Visualization of stress-strain state of thin-walled ribbed shells”, Bulletin of Civil Engineers, 2013, no. 3(38), 226–232 (In Russian)

[13] Moskalenko L. P., “Efficiency of the reinforcement of flat shells edges with ribs of variable height”, Bulletin of Civil Engineers, 2011, no. 3(28), 46–50 (In Russian)

[14] Preobrazhenskij I. N., Grishchak V. Z., Stability and oscillations of conical shells, Mashinostroenie Publ., M., 1986, 240 pp. (In Russian)

[15] Palij O. M., Spiro V. E., Anisotropic membranes in shipbuilding. Theory and evaluation, Sudostroenie Publ., Leningrad, 1977, 386 pp. (In Russian)

[16] Bezuhov N. I., Fundamentals of the theory of elasticity, plasticity and creep, Vysshaya shkola Publ., M., 1968, 512 pp. (In Russian)