Numerical methods for solving optimal control for Stefan problems
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2016), pp. 87-100

Voir la notice de l'article provenant de la source Math-Net.Ru

The article describes the mathematical model and a numerical method for the calculation and optimization of temperature fields with regard to phase transformations and the nonlinear material properties. It proposes a finite-difference method and a computer program that will effectively implement the computer simulation and optimization of thermal processes during melting and crystallization of the product. Direct Stefan problem was solved on the basis of one of the options through “enthalpic” method. The solution of the dual problem is found by smoothing the concentrated heat capacity and other parameters and characteristics of a feature such as a delta function. The article deals with a number of examples of optimization problems under various restrictions: minimizing energy consumption for melting the material, finding the maximum (minimum) temperature field, as well as two-sided estimate gradient of the solution at a given point in the area. In the above case, the functions of control are the source of the bulk power density, the values of which are located in a strip of arbitrary width. The results can be used in the practice of research and design in the field of metallurgy, electrical appliances, сryogenic etc. Refs 12. Figs 7. Tables 3.
Keywords: Stefan problem, optimal control, temperature field, enthalpy method, smoothing.
Mots-clés : phase transitions
@article{VSPUI_2016_2_a8,
     author = {S. A. Nekrasov and V. S. Volkov},
     title = {Numerical methods for solving optimal control for {Stefan} problems},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {87--100},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2016_2_a8/}
}
TY  - JOUR
AU  - S. A. Nekrasov
AU  - V. S. Volkov
TI  - Numerical methods for solving optimal control for Stefan problems
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2016
SP  - 87
EP  - 100
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2016_2_a8/
LA  - ru
ID  - VSPUI_2016_2_a8
ER  - 
%0 Journal Article
%A S. A. Nekrasov
%A V. S. Volkov
%T Numerical methods for solving optimal control for Stefan problems
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2016
%P 87-100
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSPUI_2016_2_a8/
%G ru
%F VSPUI_2016_2_a8
S. A. Nekrasov; V. S. Volkov. Numerical methods for solving optimal control for Stefan problems. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2016), pp. 87-100. http://geodesic.mathdoc.fr/item/VSPUI_2016_2_a8/