Mots-clés : phase transitions
@article{VSPUI_2016_2_a8,
author = {S. A. Nekrasov and V. S. Volkov},
title = {Numerical methods for solving optimal control for {Stefan} problems},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {87--100},
year = {2016},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2016_2_a8/}
}
TY - JOUR AU - S. A. Nekrasov AU - V. S. Volkov TI - Numerical methods for solving optimal control for Stefan problems JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2016 SP - 87 EP - 100 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2016_2_a8/ LA - ru ID - VSPUI_2016_2_a8 ER -
%0 Journal Article %A S. A. Nekrasov %A V. S. Volkov %T Numerical methods for solving optimal control for Stefan problems %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2016 %P 87-100 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2016_2_a8/ %G ru %F VSPUI_2016_2_a8
S. A. Nekrasov; V. S. Volkov. Numerical methods for solving optimal control for Stefan problems. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2016), pp. 87-100. http://geodesic.mathdoc.fr/item/VSPUI_2016_2_a8/
[1] Vasil'ev F. P., Optimization methods, Publ. House “Faktorial Press”, M., 2002, 824 pp. (in Russian)
[2] Zubov V. I., The general method of Lagrange multipliers and optimization of processes in continuous media, Doct. dis., RAS, M., 2002, 250 pp. (in Russian)
[3] Albu A. F., Zubov V. I., “Research objectives of optimum control the process of crystallization agent at the new formulation for object complex geometric shapes”, J. of Calcul. mathematics and mathem. physics, 54:12 (2014), 1879–1893 (in Russian) | DOI | Zbl
[4] Gukasov A. K., Gukasova E. V., “The numerical solution of optimal control problem of the phase transition boundary”, Basic Research, 2014, no. 12–11, 2325–2329 (in Russian)
[5] Krektuleva R. A., Batranin A. V., “The joint solution inverse problem of heat conduction and the problem of optimal design at technology of welding with non-consumable electrode”, Bulletin of the Tomsk Polytechnic University, 320:2 (2012), 104–109 (in Russian) | MR
[6] Mel'nikova Ju. S., “Mathematical modeling of time-dependent temperature field in two-phase media”, Science and education, 2012, no. 2 (in Russian) (accessed: 12.02.2016)
[7] Buchko N. A., Enthalpy method of numerical solutions problems of heat conduction at freeze or thawing of soil, SPbGUNTiPT (in Russian) (accessed: 12.02.2016)
[8] Vasil'ev V. I., Maksimov A. M., Petrov E. E., Tsypkin G. G., “Mathematical model of the freezing-thawing of saline frozen soil”, Journal of Applied Mechanics and Technical Physics, 36:5 (1995), 689–696 | DOI | Zbl
[9] Nekrasov S. A., Interval and bilateral methods of calculation with guaranteed accuracy of electric and magnetic systems, Doct. dis., South-Russian State Politechnical University, Novocherkassk, 2002, 310 pp. (in Russian)
[10] Nekrasov S. A., “Modeling of phase transitions of the first kind by the method of integral equations in the case of a stationary moving surface source”, Engineering and Physical Journal, 66:6 (1994), 754–757 (in Russian) | MR
[11] Nekrasov S. A., “Stefan problem. Pt I”, Differential Equations, 32:8 (1996), 1114–1121 (in Russian) | MR | Zbl
[12] Nekrasov S. A., “Stefan problem. Pt II”, Differential Equations, 32:9 (1996), 1254–1258 (in Russian) | MR | Zbl