@article{VSPUI_2016_2_a2,
author = {E. A. Kalinina},
title = {Repeated eigenvalues of a matrix with elements polynomially dependent on a parameter},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {26--32},
year = {2016},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2016_2_a2/}
}
TY - JOUR AU - E. A. Kalinina TI - Repeated eigenvalues of a matrix with elements polynomially dependent on a parameter JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2016 SP - 26 EP - 32 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2016_2_a2/ LA - ru ID - VSPUI_2016_2_a2 ER -
%0 Journal Article %A E. A. Kalinina %T Repeated eigenvalues of a matrix with elements polynomially dependent on a parameter %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2016 %P 26-32 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2016_2_a2/ %G ru %F VSPUI_2016_2_a2
E. A. Kalinina. Repeated eigenvalues of a matrix with elements polynomially dependent on a parameter. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2016), pp. 26-32. http://geodesic.mathdoc.fr/item/VSPUI_2016_2_a2/
[1] Kalinina E. A., “Common eigenvalues of two matrices”, Far Eastern Mathematical Journal, 13:1 (2013), 52–60 (In Russian) | MR | Zbl
[2] Mailybaev A. A., “Computation of multiple eigenvalues and generalized eigenvectors for matrices dependent on parameters”, Numer. Linear Algebra Appl., 13 (2006), 419–436 | DOI | MR | Zbl
[3] Schucan T. H., Weidenmüller H. A., “Perturbation theory for the effective interaction in nuclei”, Ann. Physics, 76 (1973), 483–501 | DOI | MR
[4] Karow M., “Eigenvalue condition numbers and a formula of Burke, Lewis and Overton”, Electron. J. Linear Algebra, 15 (2006), 143–153 | DOI | MR | Zbl
[5] Kressner D., Peláez M. J., Moro J., “Structured Hölder condition numbers for multiple eigenvalues”, SIAM J. Matrix Anal. Appl., 31:1 (2009), 175–201 | DOI | MR | Zbl
[6] Burke J. V., Lewis A. S., Overton M., “Optimization and pseudospectra, with applications to robust stability”, SIAM J. Matrix Anal. Appl., 25:1 (2003), 80–104 | DOI | MR | Zbl
[7] Jarlebring E., Kvaal S., Michiels W., “Computing all pairs $(\lambda;\mu)$ such that $\lambda$ is a double eigenvalue of $A+\mu B$”, SIAM J. Matrix Anal. Appl., 32 (2011), 902–927 | DOI | MR | Zbl
[8] Muhič A., Plestenjak B., “A method for computing all values $\lambda$ such that $A+\lambda B$ has a multiple eigenvalue”, Linear Algebra Appl., 440 (2014), 345–359 | DOI | MR | Zbl
[9] Faddeev D. K., Faddeeva V. N., Numerical methods of linear algebra Moscow, GIFML Publ., 1960, 656 pp. (In Russian)
[10] Littlewood D. E., The theory of group characters and matrix representations of groups, Oxford University Press, Oxford, 1950, 310 pp. | MR | Zbl
[11] Horn R. A., Johnson Ch. R., Topics in matrix analysis, Cambridge University Press, New York, 1991, 607 pp. | MR | Zbl
[12] MacDuffee C. C., The Theory of Matrices, Chelsea Publ. Company, New York, 1956, 110 pp.
[13] Faddeev D. K., Lections in algebra, Nauka Publ., M., 1984, 416 pp. (In Russian)
[14] Gantmacher F. R., Theory of matrices, v. 2, AMS Chelsea Publ. Company, Providence, RI, 1960, 276 pp. | MR
[15] Strassen V., “Gaussian Elimination is not Optimal”, Numerische Mathematik, 13 (1969), 354–356 | DOI | MR | Zbl
[16] Wilkinson J. H., The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965, 662 pp. | MR | Zbl