Mots-clés : neutral type equation
@article{VSPUI_2016_2_a1,
author = {A. V. Egorov},
title = {A criterion of existence and uniqueness of the {Lyapunov} matrix for a class of time delay systems},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {12--25},
year = {2016},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2016_2_a1/}
}
TY - JOUR AU - A. V. Egorov TI - A criterion of existence and uniqueness of the Lyapunov matrix for a class of time delay systems JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2016 SP - 12 EP - 25 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2016_2_a1/ LA - ru ID - VSPUI_2016_2_a1 ER -
%0 Journal Article %A A. V. Egorov %T A criterion of existence and uniqueness of the Lyapunov matrix for a class of time delay systems %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2016 %P 12-25 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2016_2_a1/ %G ru %F VSPUI_2016_2_a1
A. V. Egorov. A criterion of existence and uniqueness of the Lyapunov matrix for a class of time delay systems. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2016), pp. 12-25. http://geodesic.mathdoc.fr/item/VSPUI_2016_2_a1/
[1] Krasovskii N. N., Some problems in the theory of stability of motion, Fizmatlit Publ., M., 1959, 211 pp. (In Russian)
[2] Hale J. K., Theory of functional differential equations, Springer, New York, 1977, 365 pp. | MR | Zbl
[3] Kharitonov V. L., Time-delay systems. Lyapunov functionals and matrices, Birkhäuser, Basel, 2013, 311 pp. | MR | Zbl
[4] Kharitonov V. L., Zhabko A. P., “Lyapunov–Krasovskii approach for robust stability of time delay systems”, Automatica, 39 (2003), 15–20 | DOI | MR | Zbl
[5] Ochoa G., Velázquez J. E., Kharitonov V. L., Mondié S., “Lyapunov Matrices for Neutral Type Time Delay Systems”, Topics in Time Delay Systems, eds. J. J. Loiseau et al., Springer-Verlag, Heidelberg, 2009, 61–71 | DOI | MR
[6] Egorov A. V., Mondié S., “Necessary stability conditions for linear delay systems”, Automatica, 50 (2014), 3204–3208 | DOI | MR | Zbl
[7] Medvedeva I. V., Zhabko A. P., “Synthesis of Razumikhin and Lyapunov–Krasovskii approaches to stability analysis of time-delay systems”, Automatica, 51 (2015), 372–377 | DOI | MR | Zbl
[8] Jarlebring E., Vanbiervliet J., Michiels W., “Characterizing and computing the $\mathcal{H}_2$ norm of time-delay systems by solving the delay Lyapunov equation”, IEEE Trans. on Autom. Contr., 56:4 (2011), 814–825 | DOI | MR
[9] Sumacheva V. A., Kharitonov V. L., “On $\mathcal{H}_2$ norm of the transfer matrix of neutral type time-delay system”, Differential Equations and Control Processes, 2014, no. 4, 22–32 (In Russian)
[10] Egorov A. V., Mondié S., “A stability criterion for the single delay equation in terms of the Lyapunov matrix”, Vestnik of Saint Petersburg University. Series 10. Applied mathematics. Computer science. Control processes, 2013, no. 1, 106–115
[11] Huesca E., Mondié S., Santos J., “Polynomial approximations of the Lyapunov matrix of a class of time delay systems”, 8th IFAC Workshop on Time Delay Systems (Sinaia, Romania, 2009), 261–266
[12] Egorov A. V., “Computation of the Lyapunov matrices for time delay systems”, Proceedings of the 12th All-Russian Conference on Control Problems (Moscow, Russia, 2014), 2014, 1292–1303 (In Russian)
[13] Chashnikov M. V., Stability analysis of linear time delay systems, PhD. Dis., Saint Petersburg State University, Saint Petersburg, 2010, 94 pp. (In Russian)
[14] Bellman R., Cooke K., Differential difference equations, Academic Press, New York, 1963, 465 pp. | MR | Zbl