A criterion of existence and uniqueness of the Lyapunov matrix for a class of time delay systems
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2016), pp. 12-25
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Lyapunov matrix for systems of linear time-delay equations is a matrix-valued function which is a solution of a special dynamic system with some additional boundary conditions. This matrix allows to construct the complete type Lyapunov–Krasovskii functionals with a prescribed derivative, which are used successfully in analysis of behavior of time-delay systems. It was shown in works of Kharitonov and Chashnikov that the Lyapunov condition, that is the absence of opposite eigenvalues of the system, guarantees the existence and uniqueness of the Lyapunov matrix for systems of retarded type with multiple delays and for systems of neutral type with a single delay. In this contribution, we consider a linear time-invariant system of neutral type with two delays. It is shown that under a certain constraint the Lyapunov condition, that is the absence of opposite eigenvalues of the system, is also a criterion of the existence and uniqueness of the Lyapunov matrix. Refs 14.
Keywords: time-delay system, Lyapunov matrix.
Mots-clés : neutral type equation
@article{VSPUI_2016_2_a1,
     author = {A. V. Egorov},
     title = {A criterion of existence and uniqueness of the {Lyapunov} matrix for a class of time delay systems},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {12--25},
     year = {2016},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2016_2_a1/}
}
TY  - JOUR
AU  - A. V. Egorov
TI  - A criterion of existence and uniqueness of the Lyapunov matrix for a class of time delay systems
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2016
SP  - 12
EP  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2016_2_a1/
LA  - ru
ID  - VSPUI_2016_2_a1
ER  - 
%0 Journal Article
%A A. V. Egorov
%T A criterion of existence and uniqueness of the Lyapunov matrix for a class of time delay systems
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2016
%P 12-25
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2016_2_a1/
%G ru
%F VSPUI_2016_2_a1
A. V. Egorov. A criterion of existence and uniqueness of the Lyapunov matrix for a class of time delay systems. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2016), pp. 12-25. http://geodesic.mathdoc.fr/item/VSPUI_2016_2_a1/

[1] Krasovskii N. N., Some problems in the theory of stability of motion, Fizmatlit Publ., M., 1959, 211 pp. (In Russian)

[2] Hale J. K., Theory of functional differential equations, Springer, New York, 1977, 365 pp. | MR | Zbl

[3] Kharitonov V. L., Time-delay systems. Lyapunov functionals and matrices, Birkhäuser, Basel, 2013, 311 pp. | MR | Zbl

[4] Kharitonov V. L., Zhabko A. P., “Lyapunov–Krasovskii approach for robust stability of time delay systems”, Automatica, 39 (2003), 15–20 | DOI | MR | Zbl

[5] Ochoa G., Velázquez J. E., Kharitonov V. L., Mondié S., “Lyapunov Matrices for Neutral Type Time Delay Systems”, Topics in Time Delay Systems, eds. J. J. Loiseau et al., Springer-Verlag, Heidelberg, 2009, 61–71 | DOI | MR

[6] Egorov A. V., Mondié S., “Necessary stability conditions for linear delay systems”, Automatica, 50 (2014), 3204–3208 | DOI | MR | Zbl

[7] Medvedeva I. V., Zhabko A. P., “Synthesis of Razumikhin and Lyapunov–Krasovskii approaches to stability analysis of time-delay systems”, Automatica, 51 (2015), 372–377 | DOI | MR | Zbl

[8] Jarlebring E., Vanbiervliet J., Michiels W., “Characterizing and computing the $\mathcal{H}_2$ norm of time-delay systems by solving the delay Lyapunov equation”, IEEE Trans. on Autom. Contr., 56:4 (2011), 814–825 | DOI | MR

[9] Sumacheva V. A., Kharitonov V. L., “On $\mathcal{H}_2$ norm of the transfer matrix of neutral type time-delay system”, Differential Equations and Control Processes, 2014, no. 4, 22–32 (In Russian)

[10] Egorov A. V., Mondié S., “A stability criterion for the single delay equation in terms of the Lyapunov matrix”, Vestnik of Saint Petersburg University. Series 10. Applied mathematics. Computer science. Control processes, 2013, no. 1, 106–115

[11] Huesca E., Mondié S., Santos J., “Polynomial approximations of the Lyapunov matrix of a class of time delay systems”, 8th IFAC Workshop on Time Delay Systems (Sinaia, Romania, 2009), 261–266

[12] Egorov A. V., “Computation of the Lyapunov matrices for time delay systems”, Proceedings of the 12th All-Russian Conference on Control Problems (Moscow, Russia, 2014), 2014, 1292–1303 (In Russian)

[13] Chashnikov M. V., Stability analysis of linear time delay systems, PhD. Dis., Saint Petersburg State University, Saint Petersburg, 2010, 94 pp. (In Russian)

[14] Bellman R., Cooke K., Differential difference equations, Academic Press, New York, 1963, 465 pp. | MR | Zbl