The problem of estimation of the moment of time of the event occurrence for quadratic loss function
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2016), pp. 4-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Evaluation of the time moment of the appearance of some events on the available statistical information is of considerable interest. In medicine, agricultural physics, reliability theory, risk analysis problems of this type arise often. The various restrictions on the choice of the moment time can be taken by virtue of the specific characteristics of this problem. One of the possible approaches to solving these problems is the use of fines and loss functions. In this paper we considered the quadratic loss. Different levels of awareness are considered and the optimal estimates are found. For unknown distribution function we suggest a minimax approach and the optimal solution is found also. Defective probability distributions are considered in the paper. Defective probability distributions are used in applied problems in medicine, in reliability theory, in risk analysis. Refs 6.
Keywords: loss function, finite mixture distribution, defective probability distribution.
Mots-clés : optimal solution
@article{VSPUI_2016_2_a0,
     author = {A. V. Bure},
     title = {The problem of estimation of the moment of time of the event occurrence for quadratic loss function},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {4--11},
     year = {2016},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2016_2_a0/}
}
TY  - JOUR
AU  - A. V. Bure
TI  - The problem of estimation of the moment of time of the event occurrence for quadratic loss function
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2016
SP  - 4
EP  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2016_2_a0/
LA  - ru
ID  - VSPUI_2016_2_a0
ER  - 
%0 Journal Article
%A A. V. Bure
%T The problem of estimation of the moment of time of the event occurrence for quadratic loss function
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2016
%P 4-11
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2016_2_a0/
%G ru
%F VSPUI_2016_2_a0
A. V. Bure. The problem of estimation of the moment of time of the event occurrence for quadratic loss function. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2016), pp. 4-11. http://geodesic.mathdoc.fr/item/VSPUI_2016_2_a0/

[1] Yakushev V. P., Bure V. M., “Methodological approaches to the estimation of the optimal moment in time for the conducting of the agrotechnological event”, Reports of RAAS, 2001, no. 4, 27–29 (In Russian)

[2] Yakushev V. P., Bure V. M., “Statistical evaluation of the distribution of the optimum moment in time for the agrotechnical event”, Reports of RAAS, 2002, no. 3, 11–13 (In Russian)

[3] Bure A. V., “Evaluation of the time moment for the occurrence of an event”, Vestnik of Saint Petersburg University. Series 10. Applied mathematics. Computer science. Control processes, 2014, no. 1, 23–29 (In Russian) | MR

[4] Bure A. V., “Estimation of the crisis time of patient's state using medical database”, Proc. of XLIII Intern. science of conference of post-graduate students and students, Saint Petersburg State University Publ., Saint-Petersburg, 2012, 272–276 (In Russian)

[5] Barker K., Haimes Ya. Y., “Assessing uncertainty in extreme events: Applications to risk-based decision making in interdependent infrastructure sectors”, Reliability Engineering and System Safety, 94:4 (2009), 830–837 | DOI

[6] Feller W., An introduction to probability theory and its applications, John Wiley, Inc., New York–London–Sydney, 1957, 738 pp. | MR | MR | Zbl