Math module to automate the colorimetric method for estimating nitrogen status of plants
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2016), pp. 85-91 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Accurate prediction of nutrient status of plants during the growing period is necessary for the efficient use of fertilizers, low yields and high quality products. The cheap and affordable methods of image analysis are promising techniques for monitoring crops for decision making to optimize the production process. Colorimetric method is based on an analysis of the optical characteristics of plants by digital images. To improve the colorimetric method we developed the module for the automatic construction of calibration curves for quantifying nitrogen status of plants. Refs 11. Figs 2.
Keywords: remote sensing, digital image analysis, generalized color characteristic, construction of calibration curves.
@article{VSPUI_2016_1_a7,
     author = {O. A. Mitrofanova and V. M. Bure and E. V. Kanash},
     title = {Math module to automate the colorimetric method for estimating nitrogen status of plants},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {85--91},
     year = {2016},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2016_1_a7/}
}
TY  - JOUR
AU  - O. A. Mitrofanova
AU  - V. M. Bure
AU  - E. V. Kanash
TI  - Math module to automate the colorimetric method for estimating nitrogen status of plants
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2016
SP  - 85
EP  - 91
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2016_1_a7/
LA  - ru
ID  - VSPUI_2016_1_a7
ER  - 
%0 Journal Article
%A O. A. Mitrofanova
%A V. M. Bure
%A E. V. Kanash
%T Math module to automate the colorimetric method for estimating nitrogen status of plants
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2016
%P 85-91
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2016_1_a7/
%G ru
%F VSPUI_2016_1_a7
O. A. Mitrofanova; V. M. Bure; E. V. Kanash. Math module to automate the colorimetric method for estimating nitrogen status of plants. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2016), pp. 85-91. http://geodesic.mathdoc.fr/item/VSPUI_2016_1_a7/

[1] Batyukov A. M., “Digital images processing based on graph stationary flow construction”, Vestnik of Saint Petersburg University. Series 10. Applied mathematics. Computer science. Control processes, 2015, no. 2, 11–122 (In Russian)

[2] Grishkin V. M., “Computer system for monitoring monuments representing cultural heritage”, Vestnik of Saint Petersburg. University. Series 10. Applied mathematics. Computer science. Control processes, 2009, no. 3, 181–188 (In Russian)

[3] Flowers M., Weisz R., Heiniger R., “Remote sensing of winter wheat filler density for early nitrogen application decisions”, Agronomy Journal, 93:4 (2001), 783–789 | DOI

[4] Graeff S., Pfenning J., Claupein W., Liebig H. P., “Evaluation of image analysis to determine the N-fertilizer demand of broccoli plants”, Advances in Optical Technologies, 2008, 1–8 | DOI

[5] Deshmukh K. S., “Disease detection of crops using hybrid algorithm”, Intern. Journal of Engineering Research and Technology, 1:10 (2012), 1–5

[6] McMullen S. K., Schatz B., Rush C. M., “Assessing foliar disease of wheat image analysis”, Proc. of the Summer Crops Field Day Sponsored by the Cooperative Research, Education and Extension Team (Bushland, Tex, USA, 2004), 32–38

[7] Yakushev V. P., Kanash E. V., Konev A. A. et al., Theoretical and methodological foundations of homogeneous areas selection for the differentiated application of chemicals by the optical characteristics of crop. Practical guide, Agrophys. institute Publ., Saint Petersburg, 2010, 60 pp. (In Russian)

[8] Fairchild M. D., Color appearance models, John Wiley Sons, Ltd., Rochester, USA, 2005, 385 pp.

[9] Bure V. M., Statistical analysis methodology of the experimental data, Saint Petersburg State University Publ., Saint Petersburg, 2007, 141 pp. (In Russian)

[10] Bure V. M., Parilina E. M., Probability theory and mathematical statistics. Educational guide, Lan' Publ., Saint Petersburg, 2013, 416 pp. (In Russian)

[11] Yakushev V. P., Bure V. M., Approaches to detect statistical relationships, Saint Petersburg State University Publ., Saint Petersburg, 2003, 64 pp.