@article{VSPUI_2016_1_a2,
author = {A. Lozkins and V. M. Bure},
title = {The probabilistic method of finding the local-optimum of clustering},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {28--37},
year = {2016},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2016_1_a2/}
}
TY - JOUR AU - A. Lozkins AU - V. M. Bure TI - The probabilistic method of finding the local-optimum of clustering JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2016 SP - 28 EP - 37 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSPUI_2016_1_a2/ LA - ru ID - VSPUI_2016_1_a2 ER -
%0 Journal Article %A A. Lozkins %A V. M. Bure %T The probabilistic method of finding the local-optimum of clustering %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2016 %P 28-37 %N 1 %U http://geodesic.mathdoc.fr/item/VSPUI_2016_1_a2/ %G ru %F VSPUI_2016_1_a2
A. Lozkins; V. M. Bure. The probabilistic method of finding the local-optimum of clustering. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2016), pp. 28-37. http://geodesic.mathdoc.fr/item/VSPUI_2016_1_a2/
[1] Quackenbush J., “Computational analysis of microarray data”, Nature reviews genetics, 2:6 (2001), 418–427 | DOI
[2] Shamir R., Sharan R., “Algorithmic approaches to clustering gene expression data”, Current Topics in Computational Biology, 2001 (assessed: 15.09.2015) http://citeseerx.ist.psu.edu/
[3] Gordon A. D., Classification, Chapman Hall/CRC Monographs on Statistics Applied Probability, Prentice-Hall, 1999 (assessed: 20.08.2015) http://www.citeulike.org/ | MR | Zbl
[4] Jain A. K., Dubes R. C., Algorithms for clustering data, Prentice-Hall, Inc., 1988 (assessed: 14.06.2015) http://dl.acm.org/ | MR | Zbl
[5] Buhmann J., “Data clustering and learning”, The Handbook of Brain Theory and Neural Networks, 1995, 278–281
[6] Chakravarthy S. V., Ghosh J., “Scale-based clustering using the radial basis function network”, Neural Networks. IEEE Transactions, 7:5 (1996), 1250–1261 | DOI
[7] Gordon A. D., “Identifying genuine clusters in a classification”, Computational Statistics Data Analysis, 18:5 (1994), 561–581 | DOI | MR
[8] Hartigan J. A., “Statistical theory in clustering”, Journal of classification, 2:1 (1985), 63–76 | DOI | MR | Zbl
[9] Milligan G. W., Cooper M. C., “An examination of procedures for determining the number of clusters in a data set”, Psychometrika, 50:2 (1985), 159–179 | DOI | MR
[10] Sugar C. A., James G. M., “Finding the number of clusters in a dataset”, Journal of the American Statistical Association, 98:463 (2003), 750–763 | DOI | MR | Zbl
[11] Tibshirani R., Walther G., “Cluster validation by prediction strength”, Journal of Computational and Graphical Statistics, 14:3 (2005), 511–528 | DOI | MR
[12] Hubert L., Schultz J., “Quadratic assignment as a general data analysis strategy”, British journal of mathematical and statistical psychology, 29:2 (1976), 190–241 | DOI | MR | Zbl
[13] Tibshirani R., Walther G., Hastie T., “Estimating the number of clusters in a data set via the gap statistic”, Journal of the Royal Statistical Society. Series B (Statistical Methodology), 63:2 (2001), 411–423 | DOI | MR | Zbl
[14] Wishart D., “Mode analysis: A generalization of nearest neighbor which reduces chaining effects”, Numerical taxonomy, 76:17 (1969), 282–311
[15] Hartigan J. A., Clustering algorithms, John Wiley Sons, Inc., New York, 1975 (assessed: 28.08.2015) http://dl.acm.org/ | MR | Zbl
[16] Hartigan J. A., “Consistency of single linkage for high-density clusters”, Journal of the American Statistical Association, 76:374 (1981), 388–394 | DOI | MR | Zbl
[17] Cuevas A., Febrero M., Fraiman R., “Estimating the number of clusters”, Canadian Journal of Statistics, 28:2 (2000), 367–382 | DOI | MR | Zbl
[18] Cuevas A., Febrero M., Fraiman R., “Cluster analysis: a further approach based on density estimation”, Computational Statistics Data Analysis, 36:4 (2001), 441–459 | DOI | MR | Zbl
[19] Stuetzle W., “Estimating the cluster tree of a density by analyzing the minimal spanning tree of a sample”, Journal of classification, 20:1 (2003), 25–47 | DOI | MR | Zbl
[20] Pelleg D., Moore A. W., “$X$-means: Extending $K$-means with Efficient Estimation of the Number of Clusters”, ICML, 2000, 727–734
[21] Volkovich Z., Brazly Z., Toledano-Kitai D., Avros R., “The Hotelling's metric as a cluster stability measure”, Computer modelling and new technologies, 14 (2010), 65–72
[22] Barzily Z., Volkovich Z., Akteke-Ozturk B., “On a minimal spanning tree approach in the cluster validation problem”, Informatica. Lith. Acad. Sci., 20:2 (2009), 187–202 | MR | Zbl
[23] Hamerly Y. F. G., “PG-means: learning the number of clusters in data”, Advances in neural information processing systems, 19 (2007), 393–400
[24] Breckenridge J. N., “Replicating cluster analysis: Method, consistency, and validity”, Multivariate Behavioral Research, 24:2 (1989), 147–161 | DOI
[25] Dudoit S., Fridlyand J., “A prediction-based resampling method for estimating the number of clusters in a dataset”, Genome biology, 3:7 (2002), research0036 (assessed: 14.06.2015) http://www.genomebiology.com/ | DOI
[26] Lange T., Roth V., Braun M. L., Buhmann J. M., “Stability-based validation of clustering solutions”, Neural computation, 16:6 (2004), 1299–1323 | DOI | Zbl
[27] Milligan G. W., Cheng R., “Measuring the influence of individual data points in a cluster analysis”, Journal of classification, 13:2 (1996), 315–335 | DOI | MR | Zbl
[28] Ben-Hur A., Elisseeff A., Guyon I., “A stability based method for discovering structure in clustered data”, Pacific symposium on biocomputing, 7:6 (2002), 6–17
[29] Levine E., Domany E., “Resampling method for unsupervised estimation of cluster validity”, Neural computation, 13:11 (2001), 2573–2593 | DOI | Zbl
[30] Fowlkes E. B., Mallows C. L., “A method for comparing two hierarchical clusterings”, Journal of the American statistical association, 78:383 (1983), 553–569 | DOI