Mots-clés : variation problem
@article{VSPUI_2016_1_a11,
author = {A. V. Fominyh},
title = {Hypodifferential descent method in the problem of constructing program control},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {117--124},
year = {2016},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2016_1_a11/}
}
TY - JOUR AU - A. V. Fominyh TI - Hypodifferential descent method in the problem of constructing program control JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2016 SP - 117 EP - 124 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSPUI_2016_1_a11/ LA - ru ID - VSPUI_2016_1_a11 ER -
%0 Journal Article %A A. V. Fominyh %T Hypodifferential descent method in the problem of constructing program control %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2016 %P 117-124 %N 1 %U http://geodesic.mathdoc.fr/item/VSPUI_2016_1_a11/ %G ru %F VSPUI_2016_1_a11
A. V. Fominyh. Hypodifferential descent method in the problem of constructing program control. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2016), pp. 117-124. http://geodesic.mathdoc.fr/item/VSPUI_2016_1_a11/
[1] Demyanov V. F., Extremum conditions and variation calculus, Vysshaja shkola Publ., M., 2005, 334 pp. (In Russian)
[2] Demyanov V. F., Tamasyan G. Sh., “On direct methods for solving variation problems”, Works of Institute of mathematics and mechanics of UrB RAS, 16, no. 5 (2010), 36–47 (In Russian)
[3] Demyanov V. F., Dolgopolik M. V., “Codifferentiable functions in Banach spaces: methods and applications to Problems of Variation Calculus”, Vestnik of Saint Petersburg State University. Series 10. Applied mathematics. Computer science. Control processes, 2013, no. 3, 48–66 (In Russian)
[4] Karelin V. V., “Penalty functions in a control problem”, Automation and Remote Control, 65:3 (2004), 483–492 | DOI | MR | Zbl
[5] Demyanov V. F., Giannessi F., Karelin V. V., “Optimal control problems via exact penalty functions”, Journal of Global Optimization, 12 (1998), 215–223 | DOI | MR | Zbl
[6] Demyanov V. F., Rubinov A. M., Basics of nonsmooth analysis and quasidifferentiable optimization, Nauka Publ., M., 1990, 432 pp. (In Russian) | MR
[7] Zubov V. I., Lectures on optimal control, Nauka Publ., M., 1975, 495 pp. (In Russian) | MR
[8] Egorov A. I., Basics of control theory, Fizmatlit Publ., M., 2004, 502 pp. (In Russian) | MR
[9] Daugavet V. A., Numerical methods of quadratic programming, Saint Petersburg State University Publ., Saint Petersburg, 2001, 128 pp. (In Russian)
[10] Krylov I. A., “Numerical solution of the problem of the optimal stabilization of an artificial satellite”, USSR Computational Mathematics and Mathematical Physics, 8:1 (1968), 284–291 | DOI
[11] Gabasov R., “Questions on constructive theory of optimal control”, Vestnik of Byelorussian State University. Series 1. Physics. Mathematics. Computer science, 1981, no. 3, 55–61 (In Russian)