On a control problem of a deterministic system service
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2015), pp. 100-112 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper deals with deterministic service system with two or three bursts and one servicing device. It is assumed that the service system at any given time serves only one requirement. The goal is the timing of the switching of the service system from one queue to another. In the paper the notion of a cycle of the system services and the concept of steady-state operation of a deterministic service system are suggested. For each of the service systems the necessary and sufficient conditions for steady-state operation are constructed. We also consider two optimization problems for which an optimal solutions are constructed. Discussed problems are similar to the known problem of controlling a traffic light at an isolated intersection. Refs 7. Figs 3.
Keywords: deterministic system service, service cycle, steady state.
@article{VSPUI_2015_4_a7,
     author = {V. M. Bure and V. V. Karelin and A. N. Elfimov},
     title = {On a control problem of a deterministic system service},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {100--112},
     year = {2015},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2015_4_a7/}
}
TY  - JOUR
AU  - V. M. Bure
AU  - V. V. Karelin
AU  - A. N. Elfimov
TI  - On a control problem of a deterministic system service
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2015
SP  - 100
EP  - 112
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2015_4_a7/
LA  - ru
ID  - VSPUI_2015_4_a7
ER  - 
%0 Journal Article
%A V. M. Bure
%A V. V. Karelin
%A A. N. Elfimov
%T On a control problem of a deterministic system service
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2015
%P 100-112
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2015_4_a7/
%G ru
%F VSPUI_2015_4_a7
V. M. Bure; V. V. Karelin; A. N. Elfimov. On a control problem of a deterministic system service. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2015), pp. 100-112. http://geodesic.mathdoc.fr/item/VSPUI_2015_4_a7/

[1] Polyakova L. N., Karelin V. V., Bure V. M., Chitrow G. M., “Exact penalty function in the problem of a queuing system”, Vestnik of St. Petersburg State University. Series 10. Applied mathematics. Computer sciences. Control processes, 2015, no. 1, 73–81 (In Russian)

[2] Chernikov S. O., Linear inequalities, Nauka Publ., M., 1968, 488 pp. (In Russian) | MR

[3] Aboudolas K., Papageorgiou M., Kosmatopoulos E., “Store-and-forward based methods for the signal control problem in large-scale congested urban road networks”, Transportation Research, 17:2 (2008), 163–174 | DOI

[4] Diakaki C., Papageorgiou M., Aboudolas K., “A multivariable regulator approach to traffic-responsive networkwide signal control”, Control Engineering Practice, 2002, no. 10, 183–195 | DOI

[5] Gazis D., Potts R., “The oversaturated intersection”, Proc. of the Intern. Symposium on the Theory of Traffic Flow, Elsevier, London, 1963, 221–227

[6] Haddad J., Mahalel D., Ioslovich I., Gutman P.-O., “Constrained optimal steady-state control for isolated traffic intersections”, Control Theory Tech., 12:1 (2014), 84–94 | DOI | MR | Zbl

[7] Haddad J., De Schutter B., Mahalel V. et al., “Optimal steady-state control for isolated traffic intersections”, IEEE Transactions on Automatic Control, 55:11 (2010), 2612–2617 | DOI | MR