Mots-clés : immune response, T-lymphocytes, B-lymphocytes, IgM
@article{VSPUI_2015_4_a5,
author = {S. R. Kuznetsov},
title = {Mathematical model of the immune response},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {72--87},
year = {2015},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2015_4_a5/}
}
TY - JOUR AU - S. R. Kuznetsov TI - Mathematical model of the immune response JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2015 SP - 72 EP - 87 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2015_4_a5/ LA - ru ID - VSPUI_2015_4_a5 ER -
S. R. Kuznetsov. Mathematical model of the immune response. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2015), pp. 72-87. http://geodesic.mathdoc.fr/item/VSPUI_2015_4_a5/
[1] Molchanov A. M., “Kinetic model of the immunity”, Preprinty IPM im. Keldysha, 1970, 025, 22 pp. (In Russian)
[2] Aronova E. A., Immunity. Theory, philosophy and experiment: Essays from the history of immunology of 20$^th$ century, KomKniga Publ., M., 2006, 160 pp. (In Russian)
[3] Smirnova O. A., Stepanova N. V., “Mathematical model of oscillations under infection's immunity”, Proceedings of the Second All-Union Symposium on Oscillatory Processes in Biological and Chemical Systems (Puschino on Oka, 1970), SCBR Academy of Sciences of the USSR, Pushchino, 1971, 247–251 (In Russian)
[4] Marchuk G. I., Mathematical Models in Immunology: computational methods and experiments, Nauka Publ., M., 1991, 299 pp. (In Russian) | MR
[5] Bocharov G. A., Marchuk G. I., “Applied problems of mathematical modelling in immunology”, Comput. Math. Math. Phys., 40:12 (2000), 1905–1920 (In Russian) | MR | Zbl
[6] Bell G. I., “Mathematical model of clonal selection and antibody production”, J. Theor. Biol., 29:2 (1970), 191–232 | DOI
[7] Perelson A. S., Weisbuch G., “Immunology for physicists”, Rev. Mod. Phys., 69, Oct. (1997), 1219–1268 | DOI
[8] Kuznetsov S. R., Shishkin V. I., “Mathematical modelling as a tool for theoretical research in immunology: advances and perspectives”, Cytokines and Inflammation, 11:2 (2012), 5–13 (In Russian)
[9] Benoist C., Germain R. N., Mathis D., “A plaidoyer for ‘systems immunology’”, Immunol. Rev., 210, Apr. (2006), 229–234 | DOI
[10] Meier-Schellersheim M., Fraser Iain D. C., Klauschen F., “Multiscale modeling for biologists”, Wiley Interdiscip. Rev. Syst. Biol. Med., 1:1 (2009), 4–14 | DOI
[11] Low D. H. P., Motakis E., “deltaGseg: Macrostate estimation via molecular dynamics simulations and multiscale time series analysis”, Bioinformatics, 29:19, Oct. (2013), 2501–2502 | DOI | MR
[12] Roberts E., “Cellular and molecular structure as a unifying framework for whole-cell modeling”, Curr. Opin. Struct. Biol., 25, Apr. (2014), 86–91 | DOI
[13] Kuznetsov S. R., “Mathematical model of activation, proliferation and differentiation of T- and B-lymphocytes in process of their interactions in lymph node describing switching of synthesis immunoglobulin isotypes IgM and IgG”, The XLIV Annual International Conference Control Processes and Stability, CPS'13 (St. Petersburg, 1–4 April, 2013), St. Petersburg State University Press, St. Petersburg, 2013, 339–344 (In Russian)
[14] Kuznetsov S. R., Shishkin V. I., “A consolidated view of proliferation and differentiation processes of CD4+ T-lymphocytes: a mathematical model”, Russian Journal of Immunology, 7(16):2–3 (2013), 176–177 (In Russian)
[15] Kuznetsov S. R., Lykosov V. M., Orekhov A. V., Shishkin V. I., “Model of proliferation and differentiation precesses in nonhomogenous population”, Proceedings of the 3th International Internet-Conference on mathematical and computer modelling in biology and chemistry (Kazan, September 25, 2014), IP Siniaev D. N., Kazan, 2014, 95–103 (In Russian)
[16] Casrouge A., Beaudoing E., Dalle S. et al., “Size estimate of the alpha beta TCR repertoire of naive mouse splenocytes”, J. Immunol., 164:11, Jun. (2000), 5782–5787 | DOI
[17] Khaitov R. M., Yarilin A. A., Pinegin B. V., Atlas of Immunology, Geotar-Media Publ., M., 2011, 624 pp. (In Russian)
[18] Riznichenko G. Yu., Rubin A. B., Biophysical dynamics of productional processes, Institute of Computer Science Publ., M.–Izhevsk, 2004, 464 pp. (In Russian)
[19] Grogan J. L., Mohrs M., Harmon B. et al., “Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets”, Immunity, 14:3, Mar. (2001), 205–215 | DOI
[20] Ganusov V. V., Milutinović D., De Boer R. J., “IL-2 regulates expansion of CD4+ T cell populations by affecting cell death: insights from modeling CFSE data”, J. Immunol., 179:2, Jul. (2007), 950–957 | DOI
[21] Banks H. T., Sutton K. L., Thompson W. C. et al., “A new model for the estimation of cell proliferation dynamics using CFSE data”, J. Immunol. Methods, 373:1–2, Oct. (2011), 143–160 | DOI
[22] Doreau A., Belot A., Bastid J. et al., “Interleukin 17 acts in synergy with B cell-activating factor to influence B cell biology and the pathophysiology of systemic lupus erythematosus”, Nat. Immunol., 10:7, Jul. (2009), 778–785 | DOI
[23] Yates A., Callard R., Stark J., “Combining cytokine signalling with T-bet and GATA-3 regulation in Th1 and Th2 differentiation: a model for cellular decision-making”, J. Theor. Biol., 231:2, Nov. (2004), 181–196 | DOI | MR
[24] Severins M., Borghans J. A. M., De Boer R. J., “The role of Th1/Th2 phenotypes in T-cell vaccination: insights from a mathematical model”, T-Cell Vaccination, eds. J. Zhang, R. R. Cohen, Nova Science Publ., New York, 2008, 139–158
[25] Murphy K. M., Stockinger B., “Effector T-cell plasticity: flexibility in the face of changing circumstances”, Nat. Immunol., 11:8, Aug. (2010), 674–680 | DOI
[26] Ham H. J., De Boer R. J., “Cell division curtails helper phenotype plasticity and expedites helper T-cell differentiation”, Immunol. Cell. Biol., 90:9, Oct. (2012), 860–868 | DOI
[27] Kuznetsov S. R., Shishkin V. I., Kudriavtseva G. V., Lykosov V. M., “Investigation of the dynamics of immune complex formation and elimination in systemic lupus erythematosus by mathematical modelling tools”, Cytokines and inflammation, 13:1 (2012), 23–27 (In Russian)
[28] Kuznetsov S. R., Shishkin V. I., Lykosov V. M., “The effect of Th17 immune response on the antibodies formation dynamics in systemic lupus erythematosus (SLE): a computational modeling experience”, Proceedings of the 5th International Conference on Mathematical Biology and Bioinformatics (Pushchino, Russia, 2014), MAKS Press, M., 2014, 154–155 (In Russian)
[29] Kuznetsov S. R., Shishkin V. I., “Mathematical model of systemic lupus erythematosus (SLE) development: focus on the dynamics of immune complex formation and Th17 immune response”, Report on the 12th Dresden Symposium on Autoantibodies (September 23–26, 2015), eds. K. Conrad, U. Sack, Pabst Science Publ., Lengerich, 2015, 140–141