Differential algebra based magnetic field computations and accurate fringe field maps
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2015), pp. 36-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the purpose of precision studies of transfer maps of particle motion in complex magnetic fields, we develop a method for Differential Algebra based $3D$ field computation and multipole decomposition. It can be applied whenever a model of a magnet is given which consist of line wire currents, and the wires are utilized to represent both the coils and the iron parts via the so-called image current method. Such a model exists for most modern superconducting magnets and a large variety of others as well. It is stressed that it is the only practically possible way to extract the multipoles and its derivatives, and hence the transfer map of the particle motion, analytically to high order. We also study various related topics like aspects of computational complexity of the problem, Maxwellification of fields, importance of vanishing curl, etc., and its applications to very accurate computation of magnetic fields including fringe fields. Refs 19. Figs 4. Tables 6.
Keywords: Maxwell's equations, Biot–Savart law, differential algebra.
Mots-clés : multipoles
@article{VSPUI_2015_4_a3,
     author = {B. Erd\'elyi and M. Berz and M. Lindemann},
     title = {Differential algebra based magnetic field computations and accurate fringe field maps},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {36--55},
     year = {2015},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2015_4_a3/}
}
TY  - JOUR
AU  - B. Erdélyi
AU  - M. Berz
AU  - M. Lindemann
TI  - Differential algebra based magnetic field computations and accurate fringe field maps
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2015
SP  - 36
EP  - 55
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2015_4_a3/
LA  - en
ID  - VSPUI_2015_4_a3
ER  - 
%0 Journal Article
%A B. Erdélyi
%A M. Berz
%A M. Lindemann
%T Differential algebra based magnetic field computations and accurate fringe field maps
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2015
%P 36-55
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2015_4_a3/
%G en
%F VSPUI_2015_4_a3
B. Erdélyi; M. Berz; M. Lindemann. Differential algebra based magnetic field computations and accurate fringe field maps. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2015), pp. 36-55. http://geodesic.mathdoc.fr/item/VSPUI_2015_4_a3/

[1] The LHC Study Group, The Large Hadron Collider — Conceptual Design, Technical Report AC/95-05 (LHC), CERN, 1995, 215 pp.

[2] Wei J., Ptitsin V., Pilat F., Tepikian S., Gelfand N., Wan W., Holt J., “US-LHC IR magnet error analysis and compensation”, Proceedings EPAC-1998 (Stockholm, 1998), 380–382 | Zbl

[3] Russenschuck S., A computer program for the design of superconducting accelerator magnets, Technical Report CERN AT/95-39, CERN, 1995, 366 pp.

[4] Johnstone C., Berz M., Snopok P. (eds.), Proceedings FFAG-2009 Intern. Conference, World Scientific, Singapore, 2011, 249 pp. | DOI

[5] Storage Ring Electric Dipole Moment Collaboration, (access on 27.10.2015) https://www.bnl.gov/edm/

[6] Sabbi G., Magnetic field analysis of HGQ coil ends, Technical Report TD-97-040, Fermilab, Batavia, 1997, 17 pp.

[7] Caspi S., Helm M., Laslett L. J., Brady V. O., An approach to 3D magnetic field calculation using numerical and differential algebra methods, Technical Report LBL-32624, Lawrence Berkeley Laboratory, Berkeley, 1992, 68 pp.

[8] Berz M., Modern Map Methods in Particle Beam Physics, Academic Press, San Diego, 1999, 318 pp. (access on 27.10.2015) http://bt.pa.msu.edu/pub

[9] Berz M., “Arbitrary order description of arbitrary particle optical systems”, Nuclear Instruments and Methods, A298 (1990), 426–440 | DOI

[10] Berz M., “Differential algebraic description of beam dynamics to very high orders”, Particle Accelerators, 24 (1989), 109–124

[11] Lindemann M., Rigorous Field Analysis of Superconducting Magnets and the Influence on Nonlinear Dynamics in Particle Accelerators, Master's thesis, Michigan State University, East Lansing, Michigan, USA, 1998, 75 pp.

[12] Erdélyi B., Symplectic Approximation of Hamiltonian Flows and Accurate Simulation of Fringe Field Effects, PhD thesis, Michigan State University, East Lansing, Michigan, USA, 2001, 262 pp.

[13] Manikonda S., High Order Finite Element Methods to Compute Taylor Transfer Maps, PhD thesis, Michigan State University, East Lansing, Michigan, USA, 2006, 146 pp.

[14] Berz M., “Differential Algebraic Techniques”, Handbook of Accelerator Physics and Engineering, Ch. 2.3.7, eds. A. Chao, M. Tigner, World Scientific, Singapore, 1999, 84–87

[15] Berz M., COSY INFINITY, a new arbitrary order optics code, Los Alamos LA-11857-C, Computer Codes and the Linear Accelerator Community, 1990, 137–156

[16] Berz M., “Computational aspects of optics design and simulation: COSY INFINITY”, Nuclear Instruments and Methods, A298 (1990), 473–479 | DOI

[17] Makino K., Berz M., “COSY INFINITY version 8”, Nuclear Instruments and Methods, A427 (1999), 338–343 | DOI

[18] Makino K., Berz M., “Arbitrary order aberrations for elements characterized by measured fields”, Optical Science, Engineering and Instrumentation '97, Proceedings of SPIE, 3155, 1997, 221–227 | DOI

[19] Erdélyi B., Berz M., Makino K., Detailed analysis of fringe field effects in the large hadron collider, Technical Report MSUCL-1129, National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan, USA, 1999, 37 pp. | Zbl