Differential algebra based magnetic field computations and accurate fringe field maps
    
    
  
  
  
      
      
      
        
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2015), pp. 36-55
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For the purpose of precision studies of transfer maps of particle motion in complex magnetic fields, we develop a method for Differential Algebra based $3D$ field computation and multipole decomposition. It can be applied whenever a model of a magnet is given which consist of line wire currents, and the wires are utilized to represent both the coils and the iron parts via the so-called image current method. Such a model exists for most modern superconducting magnets and a large variety of others as well. It is stressed that it is the only practically possible way to extract the multipoles and its derivatives, and hence the transfer map of the particle motion, analytically to high order. We also study various related topics like aspects of computational complexity of the problem, Maxwellification of fields, importance of vanishing curl, etc., and its applications to very accurate computation of magnetic fields including fringe fields. Refs 19. Figs 4. Tables 6.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Maxwell's equations, Biot–Savart law, differential algebra.
Mots-clés : multipoles
                    
                  
                
                
                Mots-clés : multipoles
@article{VSPUI_2015_4_a3,
     author = {B. Erd\'elyi and M. Berz and M. Lindemann},
     title = {Differential algebra based magnetic field computations and accurate fringe field maps},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {36--55},
     publisher = {mathdoc},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2015_4_a3/}
}
                      
                      
                    TY - JOUR AU - B. Erdélyi AU - M. Berz AU - M. Lindemann TI - Differential algebra based magnetic field computations and accurate fringe field maps JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2015 SP - 36 EP - 55 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSPUI_2015_4_a3/ LA - en ID - VSPUI_2015_4_a3 ER -
%0 Journal Article %A B. Erdélyi %A M. Berz %A M. Lindemann %T Differential algebra based magnetic field computations and accurate fringe field maps %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2015 %P 36-55 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSPUI_2015_4_a3/ %G en %F VSPUI_2015_4_a3
B. Erdélyi; M. Berz; M. Lindemann. Differential algebra based magnetic field computations and accurate fringe field maps. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2015), pp. 36-55. http://geodesic.mathdoc.fr/item/VSPUI_2015_4_a3/
