Randomized algorithm for adjusting sample data
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2015), pp. 96-104 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One of the main problems of statistical analysis of experimental data is obtaining an unbiased (representative) sample. It is a natural desire to obtain a representative sample of computational methods. The procedure for adjusting the structure of the sample in accordance with the structure of the population is said to be “adjusted sample”. All known methods of adjusting the sample data have a significant drawback: these methods are “correct” empirical distribution functions, not the sample. In this paper we introduce the concepts of control spaces and studied traits, given the formal definition of a representative sample population; described randomized, algorithm, adjustment is sample data, not their empirical distributions. Iteration of algorithm of randomized sample corrections of data can be described as follows. Please select one spectral value of the control characteristics such that the absolute difference between the respective selective and general shares has a maximum value, then have all $k\mid 1\le k\le n$, sought $\max|w_k-p_k|$. If spectral values of a few, then randomly selects any of them. Let it be the $i$-th component of the vector $\mathbf {W}^{X}$ and $\mathbf {P}^{X}$. Then, if $w_i-p_i>0$, of the total sample randomly is to remove some vector $\mathbf{Z_t}$, in which the component $x_i=1$, if $w_i-p_i<0 $, the total sample randomly duplicated vector $\mathbf{Z_t}$, in which the component $x_i=1$. Refs 9.
Keywords: randomized algorithm, sampling frame.
@article{VSPUI_2015_3_a7,
     author = {A. V. Orekhov},
     title = {Randomized algorithm for adjusting sample data},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {96--104},
     year = {2015},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2015_3_a7/}
}
TY  - JOUR
AU  - A. V. Orekhov
TI  - Randomized algorithm for adjusting sample data
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2015
SP  - 96
EP  - 104
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2015_3_a7/
LA  - ru
ID  - VSPUI_2015_3_a7
ER  - 
%0 Journal Article
%A A. V. Orekhov
%T Randomized algorithm for adjusting sample data
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2015
%P 96-104
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2015_3_a7/
%G ru
%F VSPUI_2015_3_a7
A. V. Orekhov. Randomized algorithm for adjusting sample data. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2015), pp. 96-104. http://geodesic.mathdoc.fr/item/VSPUI_2015_3_a7/

[1] I. M. Vinogradov (ed.), Mathematical Encyclopedia, in 5 vol., v. 1, “Sovetskaia Entsiklopediia” Publ., M., 1977, 1152 pp. (In Russian)

[2] Oktiabr'skii P. Ia., Statistics, St. Petersburg University Press, St. Petersburg, 2001, 344 pp. (In Russian)

[3] Deming W. E., Stephan F. F., “On a least square adjustment of a sampled frequency table when the expected marginal totals are known”, The Annals of Mathematical Statistics, 11:4 (1940), 427–444 | DOI | MR

[4] Bishop Y. M., Fienberg S. E., Holland P. W., Discrete Multivariate Analysis: Theory and Practice, Springer-Verlag, New York, 2007, 568 pp. | MR | Zbl

[5] Stephan F. F., “An iterative method of adjusting sample frequency tables when expected marginal totals are known”, The Annals of Mathematical Statistics, 13:2 (1942), 166–178 | DOI | MR | Zbl

[6] Fienberg S. E., “An Iterative Procedure for Estimation in Contingency Tables”, Annals of Mathematical Statistics, 41:3 (1970), 907–917 | DOI | MR | Zbl

[7] Kryshtanovskii A. O., Kuznetsov A. G., “Reweighting the sample”, An integrated approach to data analysis in sociology, Institute of statistics AS USSR, M., 1989, 16–24 (In Russian)

[8] Granichin O., Volkovich V., Toledano-Kitai D., Randomized Algorithms in Automatic Control and Data Mining, Springer-Verlag, Heidelberg–New York–Dordrecht–London, 2014, 275 pp.

[9] Knut D. E., The Art of Computer Programming, in 3 vol., v. 1, Fundamental Algorithms, Mir Publ., M., 1976, 735 pp. (In Russian)