Quasi-one-dimensional non-stationary model of processes in a sea gas-pipelines
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2015), pp. 55-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article presents the mathematical model of non-stationary heat exchange processes between the gas flow in the sea gas-pipeline and the envirinment. The model takes into consideration the possibility of pipeline glaciation. The simplified variants of the model are discussed. They provide insight into the qualitative and the quantitative assessments of the admissibility of different simplifications. Refs 9. Fig. 1.
Keywords: gas-pipelines, analysis of thermodynamic model.
Mots-clés : ice formation
@article{VSPUI_2015_3_a4,
     author = {N. N. Ermolaeva and G. I. Kurbatova},
     title = {Quasi-one-dimensional non-stationary model of processes in a sea gas-pipelines},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {55--66},
     year = {2015},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2015_3_a4/}
}
TY  - JOUR
AU  - N. N. Ermolaeva
AU  - G. I. Kurbatova
TI  - Quasi-one-dimensional non-stationary model of processes in a sea gas-pipelines
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2015
SP  - 55
EP  - 66
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2015_3_a4/
LA  - ru
ID  - VSPUI_2015_3_a4
ER  - 
%0 Journal Article
%A N. N. Ermolaeva
%A G. I. Kurbatova
%T Quasi-one-dimensional non-stationary model of processes in a sea gas-pipelines
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2015
%P 55-66
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2015_3_a4/
%G ru
%F VSPUI_2015_3_a4
N. N. Ermolaeva; G. I. Kurbatova. Quasi-one-dimensional non-stationary model of processes in a sea gas-pipelines. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2015), pp. 55-66. http://geodesic.mathdoc.fr/item/VSPUI_2015_3_a4/

[1] Grunicheva E. V., Kurbatova G. I., Popova E. A., “Nonstationary nonisothermal flow of gas mix in offshore gas pipelines”, Mathematical models and Computer simulations, 23:4 (2011), 141–153 (In Russian) | Zbl

[2] Reid Robert C., Prausnitz John M., Sherwood Thomas K., The properties of gases and liquids, Chemistry Publ., Leningrad, 1982, 592 pp. (In Russian)

[3] Ermolaeva N. N., Kurbatova G. I., “The analysis of the approaches to the modeling of thermodynamic processes in gas flow at hyperpressure”, Vestnik of St. Petersburg University. Series 10. Applied Mathematics. Computer science. Control processes, 2013, no. 1, 35–45 (In Russian) | MR

[4] Kurbatova G. I., Popova E. A., Filippov B. V. e. a., Models of sea gas-pipelines, St. Petersburg University Press, St. Petersburg, 2005, 156 pp. (In Russian)

[5] Filippov V. B., “Sea gas pipe line model with surface freezing effect consideration”, Vestnik of St. Petersburg University. Series 1. Mathematics. Mechanics. Astronomy, 2004, no. 1, 103–111 (In Russian)

[6] Samarskii A. A., Gulin A. V., Stability of difference schemes, Editorial URSS Publ., M., 2005, 384 pp. (In Russian) | MR

[7] Doronin Iu. P., Kheisin D. E., Sea ice, Gidrometeoizdat Publ., L., 1975, 320 pp. (In Russian)

[8] Meirmanov A. M., The Stefan problem, Nauka Publ., Novosibirsk, 1986, 240 pp. (In Russian) | MR

[9] Leibenzon L. S., Collected papers, in 4 vol., v. 3, AS USSR Publ., M., 1955, 678 pp. (In Russian)