@article{VSPUI_2015_3_a3,
author = {A. V. Glusgko and E. A. Loginova},
title = {The problem of the distribution of heat in the material with a cut on the square},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {41--54},
year = {2015},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2015_3_a3/}
}
TY - JOUR AU - A. V. Glusgko AU - E. A. Loginova TI - The problem of the distribution of heat in the material with a cut on the square JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2015 SP - 41 EP - 54 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSPUI_2015_3_a3/ LA - ru ID - VSPUI_2015_3_a3 ER -
%0 Journal Article %A A. V. Glusgko %A E. A. Loginova %T The problem of the distribution of heat in the material with a cut on the square %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2015 %P 41-54 %N 3 %U http://geodesic.mathdoc.fr/item/VSPUI_2015_3_a3/ %G ru %F VSPUI_2015_3_a3
A. V. Glusgko; E. A. Loginova. The problem of the distribution of heat in the material with a cut on the square. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2015), pp. 41-54. http://geodesic.mathdoc.fr/item/VSPUI_2015_3_a3/
[1] Erdogan F., “The crack problem for bonded nonhomogeneous materials under antiplane shear loading”, J. Appl. Mech., 52 (1985), 823–828 | DOI | MR | Zbl
[2] Hu K. Q., Zhong Z., Jin B., “Anti-plane shear crack in a functionally gradient piezoelectric material”, Acta Mech. Solida Sin., 15:2 (2002), 140–148
[3] Zhou Z. G., Wang B., Yang L. J., “Investigation of the behavior of an interface crack between two half-planes of orthotropic functionally graded materials by using a new method”, JSME Intern. J. Series C. Mech. Syst. Mach. Elem. Manuf., 47:3 (2004), 467–478
[4] Ou Y. L., Chue C. H., “Mode III crack problems for two bonded functionally graded piezoelectric materials”, Intern. J. Solids Struct., 42 (2005), 3321–3337 | DOI | Zbl
[5] Ou Y. L., Two C. H., “Two mode internal cracks located within two bonded functionally graded piezoelectric half planes respectively”, Arch. Appl. Mech., 75:6/7 (2006), 364–378
[6] Yong H. D., Zhou Y. H., “Analysis of a mode III crack problem in a functionally graded coating-substrate system with finite Thickness”, Intern. J. Fract., 141 (2006), 459–467 | DOI | Zbl
[7] Li Y. D., Kang Y. L., “An anti-plane crack perpendicular to the weak/micro-discontinuous interface in a bi-FGM structure with exponential and linear non-homogeneities”, Intern. J. Fract., 146 (2007), 203–211 | DOI | Zbl
[8] Vladimirov V. S., Equations of mathematical physics, Nauka Publ., M., 1976, 527 pp. (In Russian)