The problem of the distribution of heat in the material with a cut on the square
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2015), pp. 41-54
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of the stationary distribution of the temperature field with a variable coefficient of thermal conductivity in the inner region of a three-dimensional space with a cut on the square, which simulates a heterogeneous material with a crack in the form of a flat square is considered: \begin{gather*} \Delta u(x_1, x_2, x_3)+k\dfrac{\partial u(x_1, x_2, x_3)}{\partial x_3} =0,~\,\,\,x\in {\mathbb R}^3 \backslash\Pi;\\ u(x_1, x_2, +0)-u(x_1, x_2, -0)=q_0(x_1, x_2),~\,\,\,x_1\in [-1;\,\,1],\,~ x_2\in [-1;\,\,1];\\ \dfrac{\partial u(x_1, x_2, +0)}{\partial x_3}+\dfrac k2 u(x_1, x_2, +0)-\dfrac{\partial u(x_1, x_2, -0)}{\partial x_3}-\dfrac k2 u(x_1, x_2, -0)=q_1(x_1, x_2), \end{gather*} where $u(x_1, x_2, x_3)$ is the temperature at the point with coordinates $(x_1, x_2, x_3)$. The article describes a solution of the problem, studies its properties. The main result of this study is to construct asymptotic representations of the temperature field and the heat flux near the boundary. From the formulas for the first derivatives of the solution, we can conclude that these functions at the boundaries of the crack-square are singular terms of higher order than the inside of the cut. Refs 8.
Keywords: thermal potentials, the non-homogeneous material with a square cut, the asymptotic solution.
@article{VSPUI_2015_3_a3,
     author = {A. V. Glusgko and E. A. Loginova},
     title = {The problem of the distribution of heat in the material with a cut on the square},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {41--54},
     year = {2015},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2015_3_a3/}
}
TY  - JOUR
AU  - A. V. Glusgko
AU  - E. A. Loginova
TI  - The problem of the distribution of heat in the material with a cut on the square
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2015
SP  - 41
EP  - 54
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2015_3_a3/
LA  - ru
ID  - VSPUI_2015_3_a3
ER  - 
%0 Journal Article
%A A. V. Glusgko
%A E. A. Loginova
%T The problem of the distribution of heat in the material with a cut on the square
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2015
%P 41-54
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2015_3_a3/
%G ru
%F VSPUI_2015_3_a3
A. V. Glusgko; E. A. Loginova. The problem of the distribution of heat in the material with a cut on the square. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2015), pp. 41-54. http://geodesic.mathdoc.fr/item/VSPUI_2015_3_a3/

[1] Erdogan F., “The crack problem for bonded nonhomogeneous materials under antiplane shear loading”, J. Appl. Mech., 52 (1985), 823–828 | DOI | MR | Zbl

[2] Hu K. Q., Zhong Z., Jin B., “Anti-plane shear crack in a functionally gradient piezoelectric material”, Acta Mech. Solida Sin., 15:2 (2002), 140–148

[3] Zhou Z. G., Wang B., Yang L. J., “Investigation of the behavior of an interface crack between two half-planes of orthotropic functionally graded materials by using a new method”, JSME Intern. J. Series C. Mech. Syst. Mach. Elem. Manuf., 47:3 (2004), 467–478

[4] Ou Y. L., Chue C. H., “Mode III crack problems for two bonded functionally graded piezoelectric materials”, Intern. J. Solids Struct., 42 (2005), 3321–3337 | DOI | Zbl

[5] Ou Y. L., Two C. H., “Two mode internal cracks located within two bonded functionally graded piezoelectric half planes respectively”, Arch. Appl. Mech., 75:6/7 (2006), 364–378

[6] Yong H. D., Zhou Y. H., “Analysis of a mode III crack problem in a functionally graded coating-substrate system with finite Thickness”, Intern. J. Fract., 141 (2006), 459–467 | DOI | Zbl

[7] Li Y. D., Kang Y. L., “An anti-plane crack perpendicular to the weak/micro-discontinuous interface in a bi-FGM structure with exponential and linear non-homogeneities”, Intern. J. Fract., 146 (2007), 203–211 | DOI | Zbl

[8] Vladimirov V. S., Equations of mathematical physics, Nauka Publ., M., 1976, 527 pp. (In Russian)