The problem of the distribution of heat in the material with a cut on the square
    
    
  
  
  
      
      
      
        
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2015), pp. 41-54
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The problem of the stationary distribution of the temperature
field with a variable coefficient of thermal conductivity in the
inner region of a three-dimensional space with a cut on the
square, which simulates a heterogeneous material with a crack in
the form of a flat square is considered:
\begin{gather*}
\Delta u(x_1, x_2, x_3)+k\dfrac{\partial u(x_1, x_2,
x_3)}{\partial x_3} =0,~\,\,\,x\in {\mathbb R}^3 \backslash\Pi;\\
u(x_1, x_2, +0)-u(x_1, x_2, -0)=q_0(x_1, x_2),~\,\,\,x_1\in
[-1;\,\,1],\,~ x_2\in [-1;\,\,1];\\
\dfrac{\partial u(x_1, x_2, +0)}{\partial x_3}+\dfrac k2 u(x_1,
x_2, +0)-\dfrac{\partial u(x_1, x_2, -0)}{\partial x_3}-\dfrac k2
u(x_1, x_2, -0)=q_1(x_1, x_2),
\end{gather*}
where $u(x_1, x_2, x_3)$ is the temperature at the point with
coordinates $(x_1, x_2, x_3)$.
The article describes a solution of the problem, studies its properties. The main result of this study is to construct asymptotic representations of the temperature field and the heat flux near the boundary. From the formulas for the first derivatives of the solution, we can conclude that these functions at the boundaries of the crack-square are singular terms of higher order than the inside of the cut. Refs 8.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
thermal potentials, the non-homogeneous material with a square cut, the asymptotic solution.
                    
                  
                
                
                @article{VSPUI_2015_3_a3,
     author = {A. V. Glusgko and E. A. Loginova},
     title = {The problem of the distribution of heat in the material with a cut on the square},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {41--54},
     publisher = {mathdoc},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2015_3_a3/}
}
                      
                      
                    TY - JOUR AU - A. V. Glusgko AU - E. A. Loginova TI - The problem of the distribution of heat in the material with a cut on the square JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2015 SP - 41 EP - 54 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSPUI_2015_3_a3/ LA - ru ID - VSPUI_2015_3_a3 ER -
%0 Journal Article %A A. V. Glusgko %A E. A. Loginova %T The problem of the distribution of heat in the material with a cut on the square %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2015 %P 41-54 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSPUI_2015_3_a3/ %G ru %F VSPUI_2015_3_a3
A. V. Glusgko; E. A. Loginova. The problem of the distribution of heat in the material with a cut on the square. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2015), pp. 41-54. http://geodesic.mathdoc.fr/item/VSPUI_2015_3_a3/
