On two limiting cases of flow below Joukowski’s cutoff wall
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2015), pp. 21-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two schemes of fluid flow under the rabbet of Zhukovsky is considered. Filtering is flat and steady, and the fluid flow satisfy Darcy's law. The movement occurs through an array of ground underlain by permeable or impermeable base pressure aquifer. To study these schemes mixed boundary value problem of the theory of analytic functions are formulated. It is solved by means of application of a method of P. J. Polubarinova-Kochina. The algorithms for calculating the saturated zone in case when taken into account the simultaneous effect on the course of the following factors: backwater from the impermeable base or underlying well-permeable aquifer, evaporation or infiltration at the free surface groundwater and the capillary of ground. Refs 14. Figs 6. Tables 4.
Keywords: filtering, rabbet of Zhukovsky, ground water, artesian horizon aquitard, evaporation, loose surface soil capillarity, integrated flow velocity, conformal mapping method Polubarinova-Kochina.
Mots-clés : infiltration
@article{VSPUI_2015_3_a1,
     author = {E. N. Bereslavskii and E. V. Pesterev},
     title = {On two limiting cases of flow below {Joukowski{\textquoteright}s} cutoff wall},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {21--33},
     year = {2015},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2015_3_a1/}
}
TY  - JOUR
AU  - E. N. Bereslavskii
AU  - E. V. Pesterev
TI  - On two limiting cases of flow below Joukowski’s cutoff wall
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2015
SP  - 21
EP  - 33
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2015_3_a1/
LA  - ru
ID  - VSPUI_2015_3_a1
ER  - 
%0 Journal Article
%A E. N. Bereslavskii
%A E. V. Pesterev
%T On two limiting cases of flow below Joukowski’s cutoff wall
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2015
%P 21-33
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2015_3_a1/
%G ru
%F VSPUI_2015_3_a1
E. N. Bereslavskii; E. V. Pesterev. On two limiting cases of flow below Joukowski’s cutoff wall. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2015), pp. 21-33. http://geodesic.mathdoc.fr/item/VSPUI_2015_3_a1/

[1] Bereslavskii E. N., Pesterev E. V., “About some hydrodynamic schemes of flow around the rabbet of Zhukovsky”, Vestnik of St. Petersburg University. Series 1. Mathematics. Mechanics. Astronomy, 2013, no. 1, 130–138 (In Russian)

[2] Bereslavskii E. N., “On the mode of groundwater flow around the rabbet of Zhukovsky”, Applied mathematics and mechanics, 2011, no. 2, 204–313 (In Russian)

[3] Bereslavskii E. N., Aleksandrova L. A., Pesterev E. V., “Mathematical modeling of some filtration currents in underground hydromechanical engineer”, Vestnik of St. Petersburg University. Series 10. Applied mathematics. Computer science. Control processes, 2010, no. 1, 12–22 (In Russian)

[4] Bereslavskii E. N., Aleksandrova L. A., Pesterev E. V., “Mathematical modeling of some filtration currents in underground hydromechanics”, Vestnik of St. Petersburg University. Series 10. Applied mathematics. Computer science. Control processes, 2010, no. 4, 3–15 (In Russian); 1977, 664 с. (In Russian)

[5] Polubarinova-Kochina P. Ia., The theory of the movement of groundwater, Gostekhizdat Publ., M., 1952, 656 pp.; 2 ed., Nauka Publ., M., 1977, 664 pp.

[6] Aravin V. I., Numerov S. N., The theory of the movement of fluids and gases in non-deformable porous medium, Gostekhizdat Publ., M., 1953, 616 pp. (In Russian)

[7] P. Ia. Polubarinova-Kochina (otv. red.), Development of research on the theory of filtration in the USSR (1917–1967), Nauka Publ., M., 1969, 546 pp. (In Russian)

[8] Mikhailov G. K., Nikolaevskii V. N., “The movement of liquids and gases in porous media”, Mechanics in USSR for 50 years, v. 2, ed. L. I. Sedov, Nauka Publ., M., 1970, 585–648 (In Russian)

[9] Golubev V. V., Lectures on the analytic theory of differential equations, Gostekhizdat Publ., M.–L., 1950, 436 pp. (In Russian)

[10] Bereslavskii E. N., “The integration in closed form of a class of Fuchsian equations and its application”, Differential equations, 25:6 (1989), 1048–1050 (In Russian) | MR | Zbl

[11] Bereslavskii E. N., “The integration in closed form of some differential equations of the class of Fuchs related to conformal mappings of pentagons with a cut”, Differential equations, 48:4 (2010), 459–466 (In Russian)

[12] Bereslavskii E. N., Likhacheva N. V., “On calculation of some schemes filtration from canals and irrigation canals”, Mathematical Models and Computer Simulation, 25:3 (2013), 134–148 (In Russian) | MR

[13] Bereslavskii E. N., Likhacheva N. V., “Mathematical modeling of filtration from canals and irrigation canals”, Vestnik of St. Petersburg University. Series 10. Applied mathematics. Computer science. Control processes, 2012, no. 3, 10–22 (In Russian)

[14] Bereslavskii E. N., “On the application of a class of equations for calculating Fuchs filtration from canals and irrigation canals”, Applied mathematics and mechanics, 77:5 (2013), 711–724 (In Russian)