Digital images processing based on graph stationary flow construction
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2015), pp. 115-122 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A modification of the algorithm to construct a stationary flow on a graph, which is applied to classification of digital images, is considered. An adaptation of the algorithm for multi core systems by the image partitioning is discussed. The dependence of calculation rate and classification accuracy on the number of partition elements is investigated. The numerical results are given. Bibliogr. 7. Table 2.
Keywords: image analysis, stationary flow on a graph, maximization of weighted entropy, parallel programming.
@article{VSPUI_2015_2_a9,
     author = {A. M. Batyukov},
     title = {Digital images processing based on graph stationary flow construction},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {115--122},
     year = {2015},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a9/}
}
TY  - JOUR
AU  - A. M. Batyukov
TI  - Digital images processing based on graph stationary flow construction
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2015
SP  - 115
EP  - 122
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a9/
LA  - ru
ID  - VSPUI_2015_2_a9
ER  - 
%0 Journal Article
%A A. M. Batyukov
%T Digital images processing based on graph stationary flow construction
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2015
%P 115-122
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a9/
%G ru
%F VSPUI_2015_2_a9
A. M. Batyukov. Digital images processing based on graph stationary flow construction. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2015), pp. 115-122. http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a9/

[1] Marcus Lind, An Introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge, 1995, 495 pp. | MR | Zbl

[2] Sheleihovsky G. V., City plan composition as a transport problem, Gyprogor Publ., Minsk, 1946, 129 pp. (in Russ.)

[3] Bregman L. M., “Proof of Sheleihovsky's method convergence for transport problem”, Appl. math. and math. phys. journ., 7:1 (1967), 147–156 (in Russ.) | MR

[4] Bregman L. M., “Convex sets common point findind relaxation method and it's applications for convex programming problems solving”, Appl. math. and math. phys. journ., 7:3 (1967), 620–631 (in Russ.) | MR | Zbl

[5] Ampilova N. B., Romanovskiy I. V., Petrenko E. I., “About entropy maximization in case of linear restrictions”, Intern. science conference “Space, astronomy and programming”, Mathematics and mechenics faculty St. Petersburg State University, St. Petersburg, 2008, 181–185 (in Russ.)

[6] Ampilova N. B., “Image analysis and stationary flows on graphs”, Comp. tools in education, 2013, no. 2, 24–29 (in Russ.)

[7] Fawcett T., “An introduction to ROC analysis”, Pattern Recognition Letters, 27 (2006), 861–874