Necessary conditions for a minimum of a polynomial of integral functionals
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2015), pp. 91-105
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper investigates the conditions for a minimum of a “polynomial” functional. Gateaux gradient and necessary conditions for a minimum are obtained for the “polynomial” functional. The necessary minimum conditions are used in the description of the steepest descent method for the considered problem. Further the problem of constrained minimizing of the “polynomial” functional is investigated. Using the theory of exact penalty functions, this problem under constraints reduces to the problem of unconstrained minimization. The resulting minimum conditions allow us to describe the method of hypodifferential descent for the considered problem. Numerical examples of the described methods are included. The problem of minimizing the product of powers of the integrals is widely used in aerodynamics. Some examples of integral equations and the problem of the control theory are given, which can be reduced to the problem of minimizing a “polynomial” functional. Bibliogr. 14. Table 1.
Mots-clés :
Gateaux gradient, variation, polynomial
Keywords: exact penalty function, steepest descent method, hypodifferential descent method, aerodynamics, control, integral functional.
Keywords: exact penalty function, steepest descent method, hypodifferential descent method, aerodynamics, control, integral functional.
@article{VSPUI_2015_2_a7,
author = {A. V. Fominyh},
title = {Necessary conditions for a minimum of a polynomial of integral functionals},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {91--105},
publisher = {mathdoc},
number = {2},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a7/}
}
TY - JOUR AU - A. V. Fominyh TI - Necessary conditions for a minimum of a polynomial of integral functionals JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2015 SP - 91 EP - 105 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a7/ LA - ru ID - VSPUI_2015_2_a7 ER -
%0 Journal Article %A A. V. Fominyh %T Necessary conditions for a minimum of a polynomial of integral functionals %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2015 %P 91-105 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a7/ %G ru %F VSPUI_2015_2_a7
A. V. Fominyh. Necessary conditions for a minimum of a polynomial of integral functionals. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2015), pp. 91-105. http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a7/