Necessary conditions for a minimum of a polynomial of integral functionals
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2015), pp. 91-105 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper investigates the conditions for a minimum of a “polynomial” functional. Gateaux gradient and necessary conditions for a minimum are obtained for the “polynomial” functional. The necessary minimum conditions are used in the description of the steepest descent method for the considered problem. Further the problem of constrained minimizing of the “polynomial” functional is investigated. Using the theory of exact penalty functions, this problem under constraints reduces to the problem of unconstrained minimization. The resulting minimum conditions allow us to describe the method of hypodifferential descent for the considered problem. Numerical examples of the described methods are included. The problem of minimizing the product of powers of the integrals is widely used in aerodynamics. Some examples of integral equations and the problem of the control theory are given, which can be reduced to the problem of minimizing a “polynomial” functional. Bibliogr. 14. Table 1.
Mots-clés : Gateaux gradient, variation, polynomial
Keywords: exact penalty function, steepest descent method, hypodifferential descent method, aerodynamics, control, integral functional.
@article{VSPUI_2015_2_a7,
     author = {A. V. Fominyh},
     title = {Necessary conditions for a minimum of a polynomial of integral functionals},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {91--105},
     year = {2015},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a7/}
}
TY  - JOUR
AU  - A. V. Fominyh
TI  - Necessary conditions for a minimum of a polynomial of integral functionals
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2015
SP  - 91
EP  - 105
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a7/
LA  - ru
ID  - VSPUI_2015_2_a7
ER  - 
%0 Journal Article
%A A. V. Fominyh
%T Necessary conditions for a minimum of a polynomial of integral functionals
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2015
%P 91-105
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a7/
%G ru
%F VSPUI_2015_2_a7
A. V. Fominyh. Necessary conditions for a minimum of a polynomial of integral functionals. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2015), pp. 91-105. http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a7/

[1] Miele A., Drag Minimization as the Extremization of Products of Powers of Integrals, Aero-Astronautics Report No 31, Rice University, 1967, 31 pp.

[2] Miele A., “The Extremization of Products of Powers of Functionals and Its Application to Aerodynamics”, Astronautica Acta, 12:1 (1966), 1–41

[3] Lusty A. H. (Jr.), Miele A., “Bodies of Maximum Lift-to-Drag Ratio in Hypersonic Flow”, AIAA Journal, 4:12 (1966), 2130–2135

[4] Miele A., Hull D. G., “On the Minimization of the Product of the Powers of Several Integrals”, Journal of Optimization Theory and Applications, 1:1 (1967), 70–82 | MR | Zbl

[5] Gjunter N. M., Variation calculus course, Gostechizdat Publ., M., 1941, 308 pp. (in Russ.)

[6] Krein S. G., Functional analysis, Nauka Publ., M., 1964, 424 pp. (in Russ.)

[7] Demyanov V. F., Extremum conditions and variation calculus, Vysshaya shkola Publ., M., 2005, 335 pp. (in Russ.)

[8] Kantorovich L. V., Akilov G. P., Functional analysis, Nauka Publ., M., 1977, 741 pp. (in Russ.) | MR

[9] Tamasyan G. Sh., “Numerical methods in problems of calculus of variations for functionals depending on higher order derivatives”, Journal of Mathematical Sciences, 188:3 (2013), 299–321 | MR | Zbl

[10] Tamasyan G. Sh., “The gradient methods for solving the Cauchy problem”, Vestn. of St. Petersburg University. Series 10. Applied mathematics. Computer science. Control processes, 2009, no. 4, 224–230 (in Russ.)

[11] Vasilyev L. V., Demyanov V. F., Nondifferentiable optimization, Nauka Publ., M., 1981, 384 pp. (in Russ.) | MR

[12] Demyanov V. F., Rubinov A. M., Basics of nonsmooth analysis and quasidifferential calculus, Nauka Publ., M., 1990, 432 pp. (in Russ.) | MR

[13] Daugavet V. A., “A modification of Wolfe's method”, Computational Mathematics and Mathematical Physics, 21:2 (1981), 250–256 | MR | Zbl

[14] Demyanov V. F., Dolgopolik M. V., “Codifferentiable functions in Banach spaces: methods and applications to Problems of Variation Calculus”, Vestn. of St. Petersburg University. Series 10. Applied mathematics. Computer science. Control processes, 2013, no. 3, 48–66 (in Russ.)