@article{VSPUI_2015_2_a6,
author = {A. V. Matrosov and G. N. Shirunov},
title = {A superposition method for solving a problem of an elastic isotropic parallelepiped},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {77--90},
year = {2015},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a6/}
}
TY - JOUR AU - A. V. Matrosov AU - G. N. Shirunov TI - A superposition method for solving a problem of an elastic isotropic parallelepiped JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2015 SP - 77 EP - 90 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a6/ LA - ru ID - VSPUI_2015_2_a6 ER -
%0 Journal Article %A A. V. Matrosov %A G. N. Shirunov %T A superposition method for solving a problem of an elastic isotropic parallelepiped %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2015 %P 77-90 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a6/ %G ru %F VSPUI_2015_2_a6
A. V. Matrosov; G. N. Shirunov. A superposition method for solving a problem of an elastic isotropic parallelepiped. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2015), pp. 77-90. http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a6/
[1] Lamé G., Leçon sur la théorie mathémathique de l'élasticité des corps solids, Bachelier, Paris, 1852, 335 pp.
[2] Koialovich B. M., On one partial differential equation of the fourth order, Izd-vo Imp. Akad. Nauk, St. Petersburg, 1902, 125 pp. (in Russ.)
[3] Koialovich B. M., “Studies on infinite systems of linear equations”, Izvestiya Fiz.-mat. in-ta imeni Y. A. Steklova, 1930, no. 3, 41–167 (in Russ.)
[4] Grinchenko V. T., Equilibrium and Steady Vibrations of Elastic Bodies of Finite Dimensions, Naukova dumka Publ., Kiev, 1978, 264 pp. (in Russ.) | MR
[5] Meleshko V. V., “Biharmonic problem in a rectangle: history and modernity”, Mat. metodi ta fiz.-mekh. polia, 47:3 (2004), 45–68 (in Russ.) | MR | Zbl
[6] Matrosov A. V., “Numerical-analytical solution for a boundary problem of deformation of linearly-elastic anisotropic rectangle”, Vestn. of St. Petersburg University. Series 10. Applied mathematics. Computer science. Control processes, 2007, no. 2, 55–65 (in Russ.) | Zbl
[7] Matrosov A. V., “A closed form of the operators of the method of initial functions for a linearly elastic plane problem of an orthotropic solid”, Philology and culture, 2010, no. 22, 56–62 (in Russ.)
[8] Matrosov A. V., “Hyperbolic-trigonometric solutions for an orthotropic linealy elastic rectangular domain”, Philology and culture, 2011, no. 26, 32–36 (in Russ.)
[9] Matrosov A. V., “Numerical-analytical algorithm for solving problems of plane deformation of linearly-elastic solids with irregular shapes”, Vestn. of St. Petersburg University. Series 10. Applied mathematics. Computer science. Control processes, 2008, no. 3, 70–84 (in Russ.)
[10] Matrosov A. V., “A numerical-analytic analysis of hydraulic structures”, Vestn. Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova, 2010, no. 4, 8–14 (in Russ.)
[11] Matrosov A. V., “A numerical-analytic analysis of wall-beams on a linearly elastic foundation”, Vestn. Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova, 2011, no. 2, 14–21 (in Russ.) | MR
[12] Matrosov A. V., “A numerical-analytic analysis of grillages”, Vestn. Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova, 2012, no. 1, 8–15 (in Russ.)
[13] Matrosov A. V., Shirunov G. N., “Algorithms for obtaining closed forms of the operators of the initial functions method for three-dimensional problems of the elasticity theory”, Bulletin of Civil Engineers, 2014, no. 1(42), 136–144 (in Russ.)
[14] Kantorovich L. V., Krylov V. I., Approximate Methods of Higher Analysis, Phyzmatlit Publ., M., 1962, 709 pp. (in Russ.) | MR
[15] Shirunov G. N., “Computational stability of the method of initial functions for three-dimensional problems of elasticity theory for an isotropic body”, Bulletin of Civil Engineers, 2015, no. 2(49), 58–67 (in Russ.)
[16] Lanczos C., Applied Analysis, Per. s angl. M. Z. Kainera, Phyzmatgiz Publ., M., 1961, 524 pp. (in Russ.)
[17] Matrosov A. V., Shirunov G. N., “Numerical-Analytical Computer Modeling of a Clamped Isotropic Thick Plate”, Proc. of Intern. Conference on Computer Technologies in Physical and Engineering Applications, ICCTPEA (St. Petersburg, Russia, June 30–July 4, 2014), 96 pp.