A superposition method for solving a problem of an elastic isotropic parallelepiped
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2015), pp. 77-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article introduces an algorithm for calculating impacts (values) of transcendental differential operators of the method of initial functions (MIF) in the Cartesian coordinate system for three-dimensional problems of the theory of elasticity on products of trigonometric functions. Using this algoritm three MIF solutions in the form of double trigonometric series of the corresponding coordinate variables with unknown coefficients are built. Each of these solutions can satisfy arbitrary boundary conditions (power, kinematic, mixed) on the respective two opposite faces of the isotropic parallelepiped. The sum of these solutions in accordance with the method of superposition is a general solution for an elastic parallelepiped allowing to satisfy arbitrary boundary conditions on all its faces. A numerical-analytical solution for a particular problem is obtained finding the unknown coefficients in the general solution solving the system of linear algebraic equation which is formed satisfying the given boundary conditions. An analysis of bending of a thick isotropic plate clamped on its four side faces under an uniformly distributed load on the upper horizontal face is carried out. The comparison of the results of finite element modeling using ANSYS with the analytical solution received shows some problems in FEM analysis of stresses on the faces clamped. Bibliogr. 17. Il. 5.
Keywords: superposition method, method of initial functions, theory of elasticity, isotropic parallelepiped, thick isotropic plate.
@article{VSPUI_2015_2_a6,
     author = {A. V. Matrosov and G. N. Shirunov},
     title = {A superposition method for solving a problem of an elastic isotropic parallelepiped},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {77--90},
     year = {2015},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a6/}
}
TY  - JOUR
AU  - A. V. Matrosov
AU  - G. N. Shirunov
TI  - A superposition method for solving a problem of an elastic isotropic parallelepiped
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2015
SP  - 77
EP  - 90
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a6/
LA  - ru
ID  - VSPUI_2015_2_a6
ER  - 
%0 Journal Article
%A A. V. Matrosov
%A G. N. Shirunov
%T A superposition method for solving a problem of an elastic isotropic parallelepiped
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2015
%P 77-90
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a6/
%G ru
%F VSPUI_2015_2_a6
A. V. Matrosov; G. N. Shirunov. A superposition method for solving a problem of an elastic isotropic parallelepiped. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2015), pp. 77-90. http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a6/

[1] Lamé G., Leçon sur la théorie mathémathique de l'élasticité des corps solids, Bachelier, Paris, 1852, 335 pp.

[2] Koialovich B. M., On one partial differential equation of the fourth order, Izd-vo Imp. Akad. Nauk, St. Petersburg, 1902, 125 pp. (in Russ.)

[3] Koialovich B. M., “Studies on infinite systems of linear equations”, Izvestiya Fiz.-mat. in-ta imeni Y. A. Steklova, 1930, no. 3, 41–167 (in Russ.)

[4] Grinchenko V. T., Equilibrium and Steady Vibrations of Elastic Bodies of Finite Dimensions, Naukova dumka Publ., Kiev, 1978, 264 pp. (in Russ.) | MR

[5] Meleshko V. V., “Biharmonic problem in a rectangle: history and modernity”, Mat. metodi ta fiz.-mekh. polia, 47:3 (2004), 45–68 (in Russ.) | MR | Zbl

[6] Matrosov A. V., “Numerical-analytical solution for a boundary problem of deformation of linearly-elastic anisotropic rectangle”, Vestn. of St. Petersburg University. Series 10. Applied mathematics. Computer science. Control processes, 2007, no. 2, 55–65 (in Russ.) | Zbl

[7] Matrosov A. V., “A closed form of the operators of the method of initial functions for a linearly elastic plane problem of an orthotropic solid”, Philology and culture, 2010, no. 22, 56–62 (in Russ.)

[8] Matrosov A. V., “Hyperbolic-trigonometric solutions for an orthotropic linealy elastic rectangular domain”, Philology and culture, 2011, no. 26, 32–36 (in Russ.)

[9] Matrosov A. V., “Numerical-analytical algorithm for solving problems of plane deformation of linearly-elastic solids with irregular shapes”, Vestn. of St. Petersburg University. Series 10. Applied mathematics. Computer science. Control processes, 2008, no. 3, 70–84 (in Russ.)

[10] Matrosov A. V., “A numerical-analytic analysis of hydraulic structures”, Vestn. Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova, 2010, no. 4, 8–14 (in Russ.)

[11] Matrosov A. V., “A numerical-analytic analysis of wall-beams on a linearly elastic foundation”, Vestn. Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova, 2011, no. 2, 14–21 (in Russ.) | MR

[12] Matrosov A. V., “A numerical-analytic analysis of grillages”, Vestn. Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova, 2012, no. 1, 8–15 (in Russ.)

[13] Matrosov A. V., Shirunov G. N., “Algorithms for obtaining closed forms of the operators of the initial functions method for three-dimensional problems of the elasticity theory”, Bulletin of Civil Engineers, 2014, no. 1(42), 136–144 (in Russ.)

[14] Kantorovich L. V., Krylov V. I., Approximate Methods of Higher Analysis, Phyzmatlit Publ., M., 1962, 709 pp. (in Russ.) | MR

[15] Shirunov G. N., “Computational stability of the method of initial functions for three-dimensional problems of elasticity theory for an isotropic body”, Bulletin of Civil Engineers, 2015, no. 2(49), 58–67 (in Russ.)

[16] Lanczos C., Applied Analysis, Per. s angl. M. Z. Kainera, Phyzmatgiz Publ., M., 1961, 524 pp. (in Russ.)

[17] Matrosov A. V., Shirunov G. N., “Numerical-Analytical Computer Modeling of a Clamped Isotropic Thick Plate”, Proc. of Intern. Conference on Computer Technologies in Physical and Engineering Applications, ICCTPEA (St. Petersburg, Russia, June 30–July 4, 2014), 96 pp.