Mots-clés : conformal equivalence polydisc.
@article{VSPUI_2015_2_a3,
author = {V. E. Vishnevsky and O. A. Ivanova and S. V. Chistyakov},
title = {Conformal equivalence and {Pade} approximation solutions of the {Cauchy} problem},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {39--52},
year = {2015},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a3/}
}
TY - JOUR AU - V. E. Vishnevsky AU - O. A. Ivanova AU - S. V. Chistyakov TI - Conformal equivalence and Pade approximation solutions of the Cauchy problem JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2015 SP - 39 EP - 52 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a3/ LA - ru ID - VSPUI_2015_2_a3 ER -
%0 Journal Article %A V. E. Vishnevsky %A O. A. Ivanova %A S. V. Chistyakov %T Conformal equivalence and Pade approximation solutions of the Cauchy problem %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2015 %P 39-52 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a3/ %G ru %F VSPUI_2015_2_a3
V. E. Vishnevsky; O. A. Ivanova; S. V. Chistyakov. Conformal equivalence and Pade approximation solutions of the Cauchy problem. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2015), pp. 39-52. http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a3/
[1] Poincare A., On curves defined by differential equations, Per. s franc. E. Leontovich, A. Maier, ed. A. Andronov, Gostechizdat Publ., M.–L., 1947, 392 pp. (in Russ.)
[2] Zubov B. I., Resistance movement, Nauka Publ., M., 1984, 271 pp. (in Russ.) | MR
[3] Zubov B. I., Analytical dynamics of gyroscopic systems, Sudpromgiz Publ., L., 1970, 298 pp. (in Russ.)
[4] Vishnevsky V. E., Zubov A. B., Ivanova O. A., “Pade approximation of solutions of the Cauchy problem”, Vestn. of St. Petersburg University. Series 10. Applied mathematics. Computer science. Control processes, 2012, no. 4, 3–18 (in Russ.)
[5] Baker J., Graves-Morris P., Pade approximation, Per. s angl. A. A. Rakhmanov, S. P. Suetin, ed. A. A. Gonchar, Mir Publ., M., 1986, 502 pp. (in Russ.) | MR
[6] Goluzin G. M., Geometric function theory complex variable, Nauka Publ., M., 1966, 557 pp. (in Russ.) | MR
[7] Alexandrov I. A., Sobolev V. V., Analytic functions complex variable, High School Publ., M., 1984, 194 pp. (in Russ.) | MR