Conformal equivalence and Pade approximation solutions of the Cauchy problem
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2015), pp. 39-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This is a follow-up to a work by the same authors which studies the analytical algorithms of Pade approximation of solutions to the Cauchy problem, which is known to be holomorphic in a given set and, generally speaking, is not conformally equivalent to a circle. Bibliogr. 7.
Keywords: approximation, differential equations
Mots-clés : conformal equivalence polydisc.
@article{VSPUI_2015_2_a3,
     author = {V. E. Vishnevsky and O. A. Ivanova and S. V. Chistyakov},
     title = {Conformal equivalence and {Pade} approximation solutions of the {Cauchy} problem},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {39--52},
     year = {2015},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a3/}
}
TY  - JOUR
AU  - V. E. Vishnevsky
AU  - O. A. Ivanova
AU  - S. V. Chistyakov
TI  - Conformal equivalence and Pade approximation solutions of the Cauchy problem
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2015
SP  - 39
EP  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a3/
LA  - ru
ID  - VSPUI_2015_2_a3
ER  - 
%0 Journal Article
%A V. E. Vishnevsky
%A O. A. Ivanova
%A S. V. Chistyakov
%T Conformal equivalence and Pade approximation solutions of the Cauchy problem
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2015
%P 39-52
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a3/
%G ru
%F VSPUI_2015_2_a3
V. E. Vishnevsky; O. A. Ivanova; S. V. Chistyakov. Conformal equivalence and Pade approximation solutions of the Cauchy problem. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2015), pp. 39-52. http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a3/

[1] Poincare A., On curves defined by differential equations, Per. s franc. E. Leontovich, A. Maier, ed. A. Andronov, Gostechizdat Publ., M.–L., 1947, 392 pp. (in Russ.)

[2] Zubov B. I., Resistance movement, Nauka Publ., M., 1984, 271 pp. (in Russ.) | MR

[3] Zubov B. I., Analytical dynamics of gyroscopic systems, Sudpromgiz Publ., L., 1970, 298 pp. (in Russ.)

[4] Vishnevsky V. E., Zubov A. B., Ivanova O. A., “Pade approximation of solutions of the Cauchy problem”, Vestn. of St. Petersburg University. Series 10. Applied mathematics. Computer science. Control processes, 2012, no. 4, 3–18 (in Russ.)

[5] Baker J., Graves-Morris P., Pade approximation, Per. s angl. A. A. Rakhmanov, S. P. Suetin, ed. A. A. Gonchar, Mir Publ., M., 1986, 502 pp. (in Russ.) | MR

[6] Goluzin G. M., Geometric function theory complex variable, Nauka Publ., M., 1966, 557 pp. (in Russ.) | MR

[7] Alexandrov I. A., Sobolev V. V., Analytic functions complex variable, High School Publ., M., 1984, 194 pp. (in Russ.) | MR