On the problem of planning the terminal
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2015), pp. 32-38
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Assume that terminals of several companies are not far apart. Each company provides transportation and storage of goods. If a terminal of some company is crowded, then the company can rent a storage space in a terminal of another company. If a terminal of some company is not loaded, then a part of the premises may be leased to another company. Rental of the terminal to another company and the transportation of goods from one terminal to another require additional costs. It is desirable to anticipate the need for the rental of the premises of another company, as the organization of rent and transportation of goods require some additional time and financial resources. Therefore, long-term planning of financial resources is necessary in order to provide additional costs. Cargo flow is stochastic in nature and is not fully known in advance. In this paper, we consider the problem of scheduling of a job of a terminal in a simplified mathematical model. The dynamics of the boot process of the terminal is determined by the stochastic equation with control. A general approaches to the problem of optimal control with the purpose to ensure acceptable conditions for the functioning of the terminal are formulated. For a number of practically important cases the problems of the optimal control are solved. Bibliogr. 12.
Keywords: inventory management, terminal, optimal control
Mots-clés : random variables.
@article{VSPUI_2015_2_a2,
     author = {V. M. Bure and V. V. Karelin},
     title = {On the problem of planning the terminal},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {32--38},
     year = {2015},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a2/}
}
TY  - JOUR
AU  - V. M. Bure
AU  - V. V. Karelin
TI  - On the problem of planning the terminal
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2015
SP  - 32
EP  - 38
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a2/
LA  - ru
ID  - VSPUI_2015_2_a2
ER  - 
%0 Journal Article
%A V. M. Bure
%A V. V. Karelin
%T On the problem of planning the terminal
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2015
%P 32-38
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a2/
%G ru
%F VSPUI_2015_2_a2
V. M. Bure; V. V. Karelin. On the problem of planning the terminal. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2015), pp. 32-38. http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a2/

[1] Belzunce Felix, Martinez-Puertas Helena, Ruiz Jose M., “Onallocation of redundant components forsys temswith dependent components”, European J. of Operational Research, 230:3 (2013), 573–580 | MR | Zbl

[2] Sobhani A., Wahab M. I. M., Neumann W. P., “Investigating work-related ill health effects in optimizing the performance of manufacturing systems”, European J. of Operational Research, 241:1 (2015), 708–718

[3] Tang W., Zheng J., Zhang J., “Viability decision of linear discrete-time stochastic systems with probability criterion”, J. Control Theory Appl., 7:3 (2009), 297–300 | MR

[4] Yakushev V. P., Karelin V. V., Bure V. M., “Bayesian approach for control soil acidity”, Vestn. of St. Petersburg University. Series 10. Applied mathematics. Computer science. Control processes, 2013, no. 3, 168–179 (in Russ.)

[5] Karelin V. V., Bure V. M., “Optimal allocation of a collective use center”, Vestn. of St. Petersburg University. Series 10. Applied mathematics. Computer science. Control processes, 2014, no. 4, 36–43

[6] Polyakova L. N., Karelin V. V., Bure V. M., Chitrow G. M., “Exact penalty function in the problem of a queuing system”, Vestn. of St. Petersburg University. Series 10. Applied mathematics. Computer science. Control processes, 2015, no. 1, 75–82 (in Russ.)

[7] Bayram Armagan, Solak Senay, Johnson Michael, “Stochastic models for strategic resource allocation in nonprofit foreclosed housing acquisitions”, European J. of Operational Research, 233:1 (2014), 246–262 | MR

[8] Myshkov S. K., Polyakova L. N., Tarasova V. V., “On the applicability of numerical methods of nonsmooth analysis to the solution of a linear quadratic problem of optimal control with incomplete information”, Vestn. of St. Petersburg University. Series 10. Applied mathematics. Computer science. Control processes, 2005, no. 4, 130–136 (in Russ.)

[9] Rizhikov Y. I., Queuing theory, and inventory management, Peter Publ., St. Petersburg, 384 (in Russ.)

[10] Hamdy A. Taha, Operations Research An Introduction, Williams Publ., M., 2001, 912 pp. (in Russ.)

[11] Donald C., Waters J., Inventory control and management, J. Wiley, Chichester–New York, 391 pp.

[12] Bure V. M., Parilina E. M., Theory of Probability and Mathematical Statistics, “Lan” Publ., St. Petersburg, 2013, 416 pp. (in Russ.)