@article{VSPUI_2015_2_a13,
author = {A. P. Zhabko and S. K. Myshkov},
title = {To the question about asymptotic stability of linear non-stationary systems},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {166--175},
year = {2015},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a13/}
}
TY - JOUR AU - A. P. Zhabko AU - S. K. Myshkov TI - To the question about asymptotic stability of linear non-stationary systems JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2015 SP - 166 EP - 175 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a13/ LA - ru ID - VSPUI_2015_2_a13 ER -
%0 Journal Article %A A. P. Zhabko %A S. K. Myshkov %T To the question about asymptotic stability of linear non-stationary systems %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2015 %P 166-175 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a13/ %G ru %F VSPUI_2015_2_a13
A. P. Zhabko; S. K. Myshkov. To the question about asymptotic stability of linear non-stationary systems. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2015), pp. 166-175. http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a13/
[1] Zubov V. I., Stability of motion, Vysshaya shkola Publ., M., 1973, 272 pp. (in Russ.) | MR
[2] Erugin N. P., Shtokalo I. Z., Course of ordinary differential equations, Vysshaya shkola Publ., Kiev, 1974, 472 pp. (in Russ.)
[3] Karelin V. V., “Exact penalties in multi-points problem for ordinary differential equations”, Vestn. of St. Petersburg University. Series 10: Applied mathematics. Computer science. Control processes, 2009, no. 4, 104–109 (in Russ.)
[4] Aleksandrov A. Yu., Kosov A. A., “On stability of gyroscopic systems”, Vestn. of St. Petersburg University. Series 10. Applied mathematics. Computer science. Control processes, 2013, no. 2, 3–13 (in Russ.)
[5] Tikhomirov O. G., Temkina E. V., “Asymptotic quiescent position for systems of homogeneous non-autonomous differential equations”, Vestn. of St. Petersburg University. Series 10. Applied mathematics. Computer science. Control processes, 2014, no. 3, 58–65 (in Russ.)
[6] Andrianova L. Ya., Introduction in the theory of linear differential equations, St. Petersburg University Press, St. Petersburg, 1992, 240 pp. (in Russ.) | MR
[7] Vinograd R. E., “About one criterion of the non-stability in the sense of A. M. Lyapunov the solutions of a linear system of differential equations”, Dokl. AN USSR, 84:2 (1952), 201–204 (in Russ.) | MR | Zbl
[8] Wu M. Y., “A Note on Stability of Linear Time-Varying Systems”, IEEE Transactions on Automatic Control, AC-19:2 (1974), 162 | MR
[9] Zhabko A. P., Kharitonov V. L., The Methods of linear algebra in control problems, St. Petersburg University Press, St. Petersburg, 1993, 320 pp. (in Russ.)