@article{VSPUI_2015_2_a12,
author = {M. V. Voloshin},
title = {On the asymptotic stability of solutions of nonstationary difference systems with homogeneous right-hand sides},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {150--165},
year = {2015},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a12/}
}
TY - JOUR AU - M. V. Voloshin TI - On the asymptotic stability of solutions of nonstationary difference systems with homogeneous right-hand sides JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2015 SP - 150 EP - 165 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a12/ LA - ru ID - VSPUI_2015_2_a12 ER -
%0 Journal Article %A M. V. Voloshin %T On the asymptotic stability of solutions of nonstationary difference systems with homogeneous right-hand sides %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2015 %P 150-165 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a12/ %G ru %F VSPUI_2015_2_a12
M. V. Voloshin. On the asymptotic stability of solutions of nonstationary difference systems with homogeneous right-hand sides. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2015), pp. 150-165. http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a12/
[1] Zubov V. I., Stability problem of control processes, Sudostroenie Publ., L., 1980, 253 pp. (in Russ.)
[2] Halanay A., Wexler D., Qualitative theory of impulsive systems, Mir Publ., M., 1980, 310 pp. (in Russ.)
[3] Bromberg P. V., Matrix method in the theory of relay and pulse regulation, Nauka Publ., M., 1967, 324 pp. (in Russ.)
[4] Vidal P., Nonlinear pulse systems, Energiya Publ., M., 1974, 336 pp. (in Russ.)
[5] Tikhonov A. N., Samarskiy A. A., Equations of mathematical physics, Nauka Publ., M., 1966, 724 pp. (in Russ.) | MR
[6] Dekker K., Verver J., Stability of Runge–Kutta methods for stiff nonlinear differential equations, Mir Publ., M., 1988, 334 pp. (in Russ.) | MR
[7] Lyapunov A. M., “The general problem of the stability of motion”, Collected works, v. 2, AN SSSR Publ., M.–L., 1956, 7–263 (in Russ.)
[8] Malkin I. G., Theory of stability of motion, Gostechizdat Publ., M.–L., 1952, 432 pp. (in Russ.) | MR
[9] Krasovskiy N. N., Some problems on the theory of stability of motion, Fizmatgiz Publ., M., 1959, 212 pp. (in Russ.) | MR
[10] Zubov V. I., Stability of motion, Vysshaya shkola Publ., M., 1973, 27 pp. (in Russ.) | MR
[11] Rush N., Abets P., Lalua M., Direct Lyapunov method in stability theory, Mir Publ., M., 1980, 300 pp. (in Russ.) | MR
[12] Demidovich B. P., Lectures on mathematical theory of stability, Nauka Publ., M., 1967, 472 pp. (in Russ.) | MR
[13] Khalil H. K., Nonlinear systems, Prentice-Hall, Upper Saddle River, New Jersey, 2002, 734 pp. | Zbl
[14] Bogolyubov N. N., Mitropol'skiy Yu. A., Asymptotic methods in the theory of nonlinear oscillations, Fizmatgiz Publ., M., 1963, 412 pp. (in Russ.) | MR
[15] Khapayev M. M., Asymptotic methods and stability in theory of nonlinear oscillations, Vysshaya shkola Publ., M., 1988, 184 pp. (in Russ.)
[16] Aleksandrov A. Yu., “On asymptotic stability of solutions to systems of nonstationary differential equations with homogeneous right-hand sides”, Report of the Russian Academy of Sciences, 349:3 (1996), 295–296 (in Russ.) | MR | Zbl
[17] Aleksandrov A. Yu., “The stability of equilibrium of non-stationary systems”, Prikl. matematika i mechanika, 60:2 (1996), 205–209 (in Russ.) | MR | Zbl
[18] Aleksandrov A. Yu., “On stability with respect to a nonlinear approximation”, Sib. matem. journal, 38:6 (1997), 1203–1210 (in Russ.) | MR | Zbl
[19] Peuteman J., Aeyels D., “Averaging results and the study of uniform asymptotic stability of homogeneous differential equations that are not fast time-varying”, SIAM J. Control and Optimization, 37:4 (1999), 997–1010 | MR | Zbl
[20] Moreau L., Aeyels D., Peuteman J., Sepulchre R., “A duality principle for homogeneous vector fields with applications”, Systems Control Letters, 47 (2002), 37–46 | MR | Zbl
[21] Peuteman J., Aeyels D., “Averaging techniques without requiring a fast time-varying differential equation”, Automatica, 47 (2011), 192–200 | MR | Zbl
[22] Tikhomirov O. G., “Stability of systems of homogeneous nonautonomus differential equations”, Vestn. of St. Petersburg University. Series 10. Applied mathematics. Computer science. Control processes, 2007, no. 3, 123–130 (in Russ.)
[23] Aleksandrov A. Yu., Zhabko A. P., “On the stability of solutions of nonlinear difference systems”, Izvestiya Vysshikh Uchebnykh Zavedeniy, 2005, no. 2, 3–12 (in Russ.)
[24] Kudryavtsev L. D., A course in mathematical analysis, v. I, Vysshaya shkola Publ., M., 1981, 687 pp. (in Russ.)
[25] Rosier L., “Homogeneous Lyapunov function for homogeneous continuous vector field”, Syst. Contr. Lett., 9:6 (1992), 467–473 | MR
[26] Aleksandrov A. Yu., Zhabko A. P., Stability of difference systems, NII Chemistry of St. Petersburg University Press, St. Petersburg, 2003, 112 pp. (in Russ.)
[27] Zubov V. I., Oscillations and waves, State Leningr. University Press, L., 1989, 416 pp. (in Russ.)
[28] LaSalle J. P., Rath R. J., “Eventual stability”, Proc. of the 2nd Congress of the Intern. Federation of Automatic Control, v. 1, 1965, 69–75 (in Russ.)
[29] Savchenko A. Ya., Ignatyev A. O., Some problems in the stability of nonautonomous dynamical systems, Naukova dumka Publ., Kiev, 1989, 208 pp. (in Russ.)