On the asymptotic stability of solutions of nonstationary difference systems with homogeneous right-hand sides
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2015), pp. 150-165
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Difference equations are widely used for the modeling of dynamical systems whose states are measured at discrete instants of time, as well as for the approximate replacement of continuous mathematical models. In particular, most part of numerical methods for solving of ordinary differential equations are based on their replacement by difference ones. One of directions of investigations arising in applications of difference equations is associated with the stability analysis of their solutions. In the present paper, by the use of the Lyapunov functions method, sufficient conditions of the uniform asymptotic stability of solutions of homogeneous time-varying systems of difference equations are derived. To obtain these conditions, a Lyapunov function is used which is constructed on the basis of the corresponding function found for the averaged system of ordinary differential equations. In this paper, the discrete counterparts of results concerning to the stability of solutions of homogeneous time-varying systems of ordinary differential equations are obtained. Compared with known for this type of difference systems results, the established conditions provide the uniform asymptotic stability of solutions. Bibliogr. 29.
Keywords: difference systems, stability, Lyapunov functions.
@article{VSPUI_2015_2_a12,
     author = {M. V. Voloshin},
     title = {On the asymptotic stability of solutions of nonstationary difference systems with homogeneous right-hand sides},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {150--165},
     year = {2015},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a12/}
}
TY  - JOUR
AU  - M. V. Voloshin
TI  - On the asymptotic stability of solutions of nonstationary difference systems with homogeneous right-hand sides
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2015
SP  - 150
EP  - 165
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a12/
LA  - ru
ID  - VSPUI_2015_2_a12
ER  - 
%0 Journal Article
%A M. V. Voloshin
%T On the asymptotic stability of solutions of nonstationary difference systems with homogeneous right-hand sides
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2015
%P 150-165
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a12/
%G ru
%F VSPUI_2015_2_a12
M. V. Voloshin. On the asymptotic stability of solutions of nonstationary difference systems with homogeneous right-hand sides. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2015), pp. 150-165. http://geodesic.mathdoc.fr/item/VSPUI_2015_2_a12/

[1] Zubov V. I., Stability problem of control processes, Sudostroenie Publ., L., 1980, 253 pp. (in Russ.)

[2] Halanay A., Wexler D., Qualitative theory of impulsive systems, Mir Publ., M., 1980, 310 pp. (in Russ.)

[3] Bromberg P. V., Matrix method in the theory of relay and pulse regulation, Nauka Publ., M., 1967, 324 pp. (in Russ.)

[4] Vidal P., Nonlinear pulse systems, Energiya Publ., M., 1974, 336 pp. (in Russ.)

[5] Tikhonov A. N., Samarskiy A. A., Equations of mathematical physics, Nauka Publ., M., 1966, 724 pp. (in Russ.) | MR

[6] Dekker K., Verver J., Stability of Runge–Kutta methods for stiff nonlinear differential equations, Mir Publ., M., 1988, 334 pp. (in Russ.) | MR

[7] Lyapunov A. M., “The general problem of the stability of motion”, Collected works, v. 2, AN SSSR Publ., M.–L., 1956, 7–263 (in Russ.)

[8] Malkin I. G., Theory of stability of motion, Gostechizdat Publ., M.–L., 1952, 432 pp. (in Russ.) | MR

[9] Krasovskiy N. N., Some problems on the theory of stability of motion, Fizmatgiz Publ., M., 1959, 212 pp. (in Russ.) | MR

[10] Zubov V. I., Stability of motion, Vysshaya shkola Publ., M., 1973, 27 pp. (in Russ.) | MR

[11] Rush N., Abets P., Lalua M., Direct Lyapunov method in stability theory, Mir Publ., M., 1980, 300 pp. (in Russ.) | MR

[12] Demidovich B. P., Lectures on mathematical theory of stability, Nauka Publ., M., 1967, 472 pp. (in Russ.) | MR

[13] Khalil H. K., Nonlinear systems, Prentice-Hall, Upper Saddle River, New Jersey, 2002, 734 pp. | Zbl

[14] Bogolyubov N. N., Mitropol'skiy Yu. A., Asymptotic methods in the theory of nonlinear oscillations, Fizmatgiz Publ., M., 1963, 412 pp. (in Russ.) | MR

[15] Khapayev M. M., Asymptotic methods and stability in theory of nonlinear oscillations, Vysshaya shkola Publ., M., 1988, 184 pp. (in Russ.)

[16] Aleksandrov A. Yu., “On asymptotic stability of solutions to systems of nonstationary differential equations with homogeneous right-hand sides”, Report of the Russian Academy of Sciences, 349:3 (1996), 295–296 (in Russ.) | MR | Zbl

[17] Aleksandrov A. Yu., “The stability of equilibrium of non-stationary systems”, Prikl. matematika i mechanika, 60:2 (1996), 205–209 (in Russ.) | MR | Zbl

[18] Aleksandrov A. Yu., “On stability with respect to a nonlinear approximation”, Sib. matem. journal, 38:6 (1997), 1203–1210 (in Russ.) | MR | Zbl

[19] Peuteman J., Aeyels D., “Averaging results and the study of uniform asymptotic stability of homogeneous differential equations that are not fast time-varying”, SIAM J. Control and Optimization, 37:4 (1999), 997–1010 | MR | Zbl

[20] Moreau L., Aeyels D., Peuteman J., Sepulchre R., “A duality principle for homogeneous vector fields with applications”, Systems Control Letters, 47 (2002), 37–46 | MR | Zbl

[21] Peuteman J., Aeyels D., “Averaging techniques without requiring a fast time-varying differential equation”, Automatica, 47 (2011), 192–200 | MR | Zbl

[22] Tikhomirov O. G., “Stability of systems of homogeneous nonautonomus differential equations”, Vestn. of St. Petersburg University. Series 10. Applied mathematics. Computer science. Control processes, 2007, no. 3, 123–130 (in Russ.)

[23] Aleksandrov A. Yu., Zhabko A. P., “On the stability of solutions of nonlinear difference systems”, Izvestiya Vysshikh Uchebnykh Zavedeniy, 2005, no. 2, 3–12 (in Russ.)

[24] Kudryavtsev L. D., A course in mathematical analysis, v. I, Vysshaya shkola Publ., M., 1981, 687 pp. (in Russ.)

[25] Rosier L., “Homogeneous Lyapunov function for homogeneous continuous vector field”, Syst. Contr. Lett., 9:6 (1992), 467–473 | MR

[26] Aleksandrov A. Yu., Zhabko A. P., Stability of difference systems, NII Chemistry of St. Petersburg University Press, St. Petersburg, 2003, 112 pp. (in Russ.)

[27] Zubov V. I., Oscillations and waves, State Leningr. University Press, L., 1989, 416 pp. (in Russ.)

[28] LaSalle J. P., Rath R. J., “Eventual stability”, Proc. of the 2nd Congress of the Intern. Federation of Automatic Control, v. 1, 1965, 69–75 (in Russ.)

[29] Savchenko A. Ya., Ignatyev A. O., Some problems in the stability of nonautonomous dynamical systems, Naukova dumka Publ., Kiev, 1989, 208 pp. (in Russ.)