Solution of the problem of finding the optimal column in terms of optimal paper cutting
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2015), pp. 100-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper describes the search of the optimal column in terms of the column generation method for solving the problem of paper cutting. The initial problem is a search for a set of cutting plans, providing the production of all products in the required amounts with minimal waste of material in the edge. The column generation method was chosen due to the large variety of options cutting. This raises the problem of finding the optimal column at each iteration by solving the auxiliary problem of linear cutting given the large number of technological parameters. The solution is arrived at by means of linear and dynamic programming, the correctness of using these algorithms in the conditions of the problem is also investigated. The problem is complicated by considering the deadlines of production orders. The algorithm developed, which is part of a software system, has been tested on a set of real industrial data of pulp and paper mills. As a result of testing a 1–2 percent increase of useful production using the software system was observed. Bibliogr. 10.
Keywords: cutting the paper, dynamic programming, linear programming.
@article{VSPUI_2015_1_a9,
     author = {A. R. Urban},
     title = {Solution of the problem of finding the optimal column in terms of optimal paper cutting},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {100--106},
     year = {2015},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a9/}
}
TY  - JOUR
AU  - A. R. Urban
TI  - Solution of the problem of finding the optimal column in terms of optimal paper cutting
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2015
SP  - 100
EP  - 106
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a9/
LA  - ru
ID  - VSPUI_2015_1_a9
ER  - 
%0 Journal Article
%A A. R. Urban
%T Solution of the problem of finding the optimal column in terms of optimal paper cutting
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2015
%P 100-106
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a9/
%G ru
%F VSPUI_2015_1_a9
A. R. Urban. Solution of the problem of finding the optimal column in terms of optimal paper cutting. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2015), pp. 100-106. http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a9/

[1] Urban A. R., Kuznetcov V. A., “Mathematical models and methods for taking into account products` deadlines in the problem of cutting paper machine”, Uchen. zap. Petrozavodsk. gos. un-ta, 2014, no. 4(141), 112–115

[2] Arhipov I. V., “Mathematical models of cutting forest raw materials in problems of planning and management sawmill”, Uchen. zap. Petrozavodsk. gos. un-ta, 2013, no. 8(137), 93–97

[3] Arhipov I. V., “Mathematical models and experience in the implementation of the planning system for cutting forest raw materials”, Vestn. of St. Petersburg University. Serie 10: Applied mathematics, computer science, control processes, 2014, no. 3, 82–92

[4] Voronin A. V., Kuznetcov V. A., Applied optimization problems in the pulp and paper industry, Izd-vo Petrozavodsk. gos. un-ta, Petrozavodsk, 2000, 152 pp.

[5] Kuznetcov V. A., Cutting problems in the pulp and paper industry, Izd-vo S.-Peterb. lesotehn. akademii, St. Petersburg, 2000, 132 pp.

[6] Lasdon S., Optimization Theory for Large Systems, Macmillan Co., New York, 1970, 523 pp.

[7] Gass S. I., Linear Programming: Methods and Applications, Fifth edition, McGraw-Hill, New York, 1985, 544 pp.

[8] Golshtein E. G., Duality theory in mathematical programming and its applications, Nauka, M., 1971, 352 pp.

[9] Bellman R., Dreyfus S., Applied Dynamic Programming, Princeton University Press, Princeton, New Jersey, 1962, 363 pp.

[10] Bellman R., Dynamic Programming, Dover Publications, New York, 1957, 384 pp.