@article{VSPUI_2015_1_a6,
author = {L. N. Polyakova and V. V. Karelin and V. M. Bure and G. M. Chitrow},
title = {Exact penalty functions in the problem of a queueing system},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {75--82},
year = {2015},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a6/}
}
TY - JOUR AU - L. N. Polyakova AU - V. V. Karelin AU - V. M. Bure AU - G. M. Chitrow TI - Exact penalty functions in the problem of a queueing system JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2015 SP - 75 EP - 82 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a6/ LA - ru ID - VSPUI_2015_1_a6 ER -
%0 Journal Article %A L. N. Polyakova %A V. V. Karelin %A V. M. Bure %A G. M. Chitrow %T Exact penalty functions in the problem of a queueing system %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2015 %P 75-82 %N 1 %U http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a6/ %G ru %F VSPUI_2015_1_a6
L. N. Polyakova; V. V. Karelin; V. M. Bure; G. M. Chitrow. Exact penalty functions in the problem of a queueing system. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2015), pp. 75-82. http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a6/
[1] Dad J., Alel D., Ioslovich I., Gutman P.-O., “Constrained optimal steady-state control for isolated traffic intersections”, Control Theory and Technology, 12:1, February (2014), 84–94 | DOI
[2] Leonov G. A., Shumafov M. M., Stabilization of linear system, Cambridge Scientific Publishers, Cambridge, 2012, 430 pp.
[3] Matveev A. S., Yakubovich V. A., Optimal control systems: Ordinary differential equations. Special problems, Izd-vo St. Peterburg University, St. Petersburg, 2003, 538 pp.
[4] Bure V. M., Sergeeva A. A., “Algorithm for determing the equilibrium provided penalties for the delay in the construction market”, Vestn. of St. Petersburg University. Serie 10: Applied mathematics, computer science, control processes, 2013, no. 3, 32–38
[5] Demyanov V. F., Giannessi F., Karelin V. V., “Optimal Control Problems via Exact Penalty Functions”, J. of Global Optimiz., 12:3 (1998), 215–223 | DOI
[6] Eremin I. I., “The penalty method in convex programming”, Dokl. USSR Academy of Sciences, 173 (1967), 748–751
[7] Zangwill W. L., “Nonlinear programming via penalty functions”, Management Science, 13 (1967), 344–358 | DOI
[8] Demyanov V. F., Rubinov A. M., Foundations of Nonsmooth Analysis and Quasidifferential Calculus, Nauka, M., 1990, 431 pp.
[9] Karelin V. V., “One approach to the problem of estimating parameters of a dynamical system under uncertainty”, Vestn. of St. Petersburg University. Serie 10: Applied mathematics, computer science, control processes, 2012, no. 4, 31–36
[10] Lebedev D. M., Polyakova L. N., “The exact penalty method for the solution of one problem of convex programming”, Vestn. of St. Petersburg University. Serie 10: Applied mathematics, computer science, control processes, 2014, no. 1, 72–78