Exact penalty functions in the problem of a queueing system
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2015), pp. 75-82 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a deterministic queueing system whose dynamics can be described by a system of ordinary differential equations. The queueing system contains one servicer with two queues 1 and 2. The speed of application reception depends on the number of queue and of the time. Speed of application processing by servicers can be selected from within predetermined limits and are considered control. Speeds of processing are considered control. The problem is to minimize total lengths of queues. The necessary and sufficient conditions are received in the problem of piecewise constant control. Bibliogr. 10.
Keywords: deterministic queuing system, piecewise constant control, the exact penalty functions.
@article{VSPUI_2015_1_a6,
     author = {L. N. Polyakova and V. V. Karelin and V. M. Bure and G. M. Chitrow},
     title = {Exact penalty functions in the problem of a queueing system},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {75--82},
     year = {2015},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a6/}
}
TY  - JOUR
AU  - L. N. Polyakova
AU  - V. V. Karelin
AU  - V. M. Bure
AU  - G. M. Chitrow
TI  - Exact penalty functions in the problem of a queueing system
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2015
SP  - 75
EP  - 82
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a6/
LA  - ru
ID  - VSPUI_2015_1_a6
ER  - 
%0 Journal Article
%A L. N. Polyakova
%A V. V. Karelin
%A V. M. Bure
%A G. M. Chitrow
%T Exact penalty functions in the problem of a queueing system
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2015
%P 75-82
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a6/
%G ru
%F VSPUI_2015_1_a6
L. N. Polyakova; V. V. Karelin; V. M. Bure; G. M. Chitrow. Exact penalty functions in the problem of a queueing system. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2015), pp. 75-82. http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a6/

[1] Dad J., Alel D., Ioslovich I., Gutman P.-O., “Constrained optimal steady-state control for isolated traffic intersections”, Control Theory and Technology, 12:1, February (2014), 84–94 | DOI

[2] Leonov G. A., Shumafov M. M., Stabilization of linear system, Cambridge Scientific Publishers, Cambridge, 2012, 430 pp.

[3] Matveev A. S., Yakubovich V. A., Optimal control systems: Ordinary differential equations. Special problems, Izd-vo St. Peterburg University, St. Petersburg, 2003, 538 pp.

[4] Bure V. M., Sergeeva A. A., “Algorithm for determing the equilibrium provided penalties for the delay in the construction market”, Vestn. of St. Petersburg University. Serie 10: Applied mathematics, computer science, control processes, 2013, no. 3, 32–38

[5] Demyanov V. F., Giannessi F., Karelin V. V., “Optimal Control Problems via Exact Penalty Functions”, J. of Global Optimiz., 12:3 (1998), 215–223 | DOI

[6] Eremin I. I., “The penalty method in convex programming”, Dokl. USSR Academy of Sciences, 173 (1967), 748–751

[7] Zangwill W. L., “Nonlinear programming via penalty functions”, Management Science, 13 (1967), 344–358 | DOI

[8] Demyanov V. F., Rubinov A. M., Foundations of Nonsmooth Analysis and Quasidifferential Calculus, Nauka, M., 1990, 431 pp.

[9] Karelin V. V., “One approach to the problem of estimating parameters of a dynamical system under uncertainty”, Vestn. of St. Petersburg University. Serie 10: Applied mathematics, computer science, control processes, 2012, no. 4, 31–36

[10] Lebedev D. M., Polyakova L. N., “The exact penalty method for the solution of one problem of convex programming”, Vestn. of St. Petersburg University. Serie 10: Applied mathematics, computer science, control processes, 2014, no. 1, 72–78