Adaptive method for solving boundary value problems for the Poisson equation with rapidly changing potential
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2015), pp. 64-74
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The adaptive grid method is used for solving boundary value problem for the Poisson equation. This method can significantly reduce the number of grid nodes in case of a drastic change of desired solution in some sub-regions of the computational domain. This article describes general criteria for evaluation of the sub-domains with a drastic change in the solution, and the algorithm for constructing a Cartesian grid with local refinement in accordance with specified criteria. Bibliogr. 25. Il. 5. Tables 2.
Mots-clés : Poisson's equation
Keywords: adaptive grid method.
@article{VSPUI_2015_1_a5,
     author = {N. V. Ovsiannikov},
     title = {Adaptive method for solving boundary value problems for the {Poisson} equation with rapidly changing potential},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {64--74},
     year = {2015},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a5/}
}
TY  - JOUR
AU  - N. V. Ovsiannikov
TI  - Adaptive method for solving boundary value problems for the Poisson equation with rapidly changing potential
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2015
SP  - 64
EP  - 74
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a5/
LA  - ru
ID  - VSPUI_2015_1_a5
ER  - 
%0 Journal Article
%A N. V. Ovsiannikov
%T Adaptive method for solving boundary value problems for the Poisson equation with rapidly changing potential
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2015
%P 64-74
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a5/
%G ru
%F VSPUI_2015_1_a5
N. V. Ovsiannikov. Adaptive method for solving boundary value problems for the Poisson equation with rapidly changing potential. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2015), pp. 64-74. http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a5/

[1] Samet H., Spatial Data Structures, Addison-Wesley publishing company, Reading, 1990, 512 pp.

[2] Smith I. M., Griffiths D. K., Programming the finite element method, British library in publication data, Reading, 2004, 646 pp.

[3] Pascal J. F., George P. L., Mesh generation application of finite elements, HERMES science publishing, Reading, 2000, 817 pp.

[4] Lebedev A. S., Liseikin V. D., Hakimzynov G. S., “Development of methods for constructing adaptive grids”, Vychislitel'nye tehnologii, 7:3 (2002), 29–43

[5] Nikishov G. P., “Finite element algorithm with adaptive quadtree-octree mesh refinement”, ANZIAM Journal, 46 (2005), 15–28

[6] Gilmanov A. N., Methods for adaptive grids in problems of gas dynamics, Nauka, M., 2000, 248 pp.

[7] Magnolia M., Guillaume E., Claire C., “Development of a refinement criterion for adaptive mesh refinement in steam-assisted gravity drainage simulation”, Comput. Geosci., 15:1 (2010), 17–34

[8] Shengtais Li, “Comparison of refinement criteria for structured adaptive mesh refinement”, Journal of Comput. and Applied Math., 233:12 (2009), 3139–3147

[9] Mitrushkin D. A., Popov U. P., “About of one method of local cut very smalling for calculation net near by circular spring small dimension”, Preprints In-ta prikl. matematiki im. M. V. Keldysha, 2014, 025, 32 pp.

[10] Dydkin A., Gudzovski A., “Methods of visualization of three-dimensional data on a Cartesian locally crushed the nets”, Proc. GraphiCon (1998)

[11] Chepilko S. S., Udov U. V., The development of the generator Cartesian grids CDF-module based on the method of nested boundaries, FGUP «NITI» imeni A. P. Aleksandrova, Sosnovyj Bor, Leningradskaja obl., Rossija, 2013, 25–33

[12] Drivotin O. I., Ovsynnikov D. A., “About the definition of stationary solutions of the Vlasov equation for axially symmetric beam of charged particles in a longitudinal magnetic field”, J. vychisl. matematiki i matem. fiziki, 27:3 (1987), 416–427

[13] Drivotin O. I., Ovsynnikov D. A., “About new classes of stationary solutions of the Vlasov equation for axially symmetric beam of charged particles with constant density”, J. vychisl. matematiki i matem. fiziki, 29:8 (1989), 1245–1250

[14] Drivotin O. I., Ovsynnikov D. A., “On the self-consistent distributions for charged particle beam in a longitudinal magnetic field”, Dokl. RAN, 33:3 (1994), 284–287

[15] Drivotin O. I., Ovsynnikov D. A., Simulation of intense beams of charged particles, Izd-vo S.-Peterb. un-ta, St. Petersburg, 2003, 176 pp.

[16] Drivotin O. I., Ovsynnikov D. A., “Self-consistent distribution of charged particles in a longitudinal magnetic field, I”, Vestn. of St. Petersburg University. Serie 10: Applied mathematics, computer science, control processes, 2004, no. 1, 3–15

[17] Drivotin O. I., Ovsynnikov D. A., “Self-consistent distribution of charged particles in a longitudinal magnetic field, II”, Vestn. of St. Petersburg University. Serie 10: Applied mathematics, computer science, control processes, 2004, no. 2, 70–81

[18] Ovsynnikov D. A., Edamenko N. S., “Modeling the dynamics of charged particle beams”, Vestn. of St. Petersburg University. Serie 10: Applied mathematics, computer science, control processes, 2013, no. 2, 60–65

[19] Drivotin O. I., Ovsynnikov D. A., “Solving the Vlasov equation for a beam of charged particles in a magnetic field”, Izv. Irkutsk. gos. un-ta. Serie Matematika, 6:4 (2013), 2–22

[20] Drivotin O. I., Ovsynnikov D. A., “Determination of the stationary solutions of the Vlasov equation for an axially symmetric beam of charged particles in a longitudinal magnetic field”, USSR Comp. Math. Math. Phys., 27:2 (1987), 62–70 | DOI

[21] Drivotin O. I., Ovsynnikov D. A., “New classes of stationary solutions of the Vlasov equation for an axially symmetric beam of charged particles with constant density”, USSR Comp. Math. Math. Phys., 29:4 (1989), 195–199 | DOI

[22] Drivotin O. I., Ovsynnikov D. A., “New classes of uniform distributions of charged particles in longitudinal magnetic field”, Proc. IEEE Particle Accelerations Conf. (Vancouver, Canada, 1997), 1943–1945

[23] Drivotin O. I., Ovsynnikov D. A., “Modelling of self-consistence distributions for longitudinal non-uniform beam”, Nucl. Instr. Meth. Phys. Res., 558:1 (2006), 112–118 | DOI

[24] Drivotin O. I., Ovsynnikov D. A., “Self-consistence distributions for charged particle beam in magnetic field”, Internal Journal of Modern Phys. A, 24:5 (2009), 816–842 | DOI

[25] Drivotin O. I., “Covariant formulation of the Vlasov equation”, Proc. Intern. Particle Accelerators Conf. IPAC'2011 (San-Sebastian, Spain, 2011), 2277–2279 http://accelconf.web.cern.ch/accelconf/ipac2011/papers/wepc114.pdf

[26] Drivotin O. I., “Degenerate Solution of the Vlasov equation”, Proc. RuPAC'2012 (St. Petersburg, September 2012), 376–378 http://accelconf.web.cern.ch/accelconf/rupac2012/papers/tuppb028.pdf