@article{VSPUI_2015_1_a3,
author = {V. V. Zhuk and O. A. Tumka and N. A. Kozlov},
title = {Constants in {Jackson-type} inequations for the best approximation of periodic differentiable functions},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {33--41},
year = {2015},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a3/}
}
TY - JOUR AU - V. V. Zhuk AU - O. A. Tumka AU - N. A. Kozlov TI - Constants in Jackson-type inequations for the best approximation of periodic differentiable functions JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2015 SP - 33 EP - 41 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a3/ LA - ru ID - VSPUI_2015_1_a3 ER -
%0 Journal Article %A V. V. Zhuk %A O. A. Tumka %A N. A. Kozlov %T Constants in Jackson-type inequations for the best approximation of periodic differentiable functions %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2015 %P 33-41 %N 1 %U http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a3/ %G ru %F VSPUI_2015_1_a3
V. V. Zhuk; O. A. Tumka; N. A. Kozlov. Constants in Jackson-type inequations for the best approximation of periodic differentiable functions. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2015), pp. 33-41. http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a3/
[1] Timan A. F., Theory of approximation of functions of a real variable, Fizmatgiz, M., 1960, 624 pp.
[2] De Vore R. A., Lorentz G. G., Constructive Approximation, Springer-Verlag, Berlin–Heidelberg–New York, 1993, 450 pp.
[3] Zhuk V. V., Tumka O. A., “On some modification of Jackson's generalized theorem for the best approximations of periodic functions”, Vestn. of St. Petersburg University. Serie 10: Applied mathematics, computer science, control processes, 2014, no. 1, 40–50
[4] Vinogradov O. L., Zhuk V. V., “Estimates for functionals with a known, finite set of moments, in terms of moduli of continuity, and behavior of constants, in the Jackson-type inequalities”, St. Peterburg Mathematical Journal, 25:5 (2013), 691–721 | DOI
[5] Zhuk V. V., Bure V. M., “On the constants in the generalized Jackson theorem”, Transactions of the International scientific conference “Modern problems of mathematics, mechanics, computer science” (Russia, Tula, 15–19 September 2014), Tula State University Publishing, Tula, 2014, 48–49
[6] Zhuk V. V., Structural properties of functions and sharpness of approximation, Izd-vo Leningr. un-ta, Leningrad, 1984, 116 pp.
[7] Zhuk V. V., “Inequalities of the type of the generalized Jackson theorem for the best approximations”, Journal of Mathematical Sciences (United States), 193:1 (2013), 75–88 | DOI
[8] Zhuk V. V., “Estimates for the best approximations of periodic functions by linear combinations of the functions and its primitives”, Journal of Mathematical Sciences (United States), 193:1 (2013), 89–99 | DOI
[9] Zhuk V. V., Kuzutin V. F., Approximation of functions and numerical integration, Izd-vo Leningr. university, Leningrad, 1995, 352 pp.
[10] Zhuk V. V., Puerov G. Yu., “Comparison of errors of approximation by generalized Steklov means in the space $L_2$”, Vestn. of St. Petersburg University. Serie 10: Applied mathematics, computer science, control processes, 2009, no. 1, 56–62
[11] Zhuk V. V., Approximations of periodic functions, Izd-vo Leningr. university, Leningrad, 1982, 366 pp.
[12] Zhuk V. V., “Approximation of $2\pi$-periodic function by linear operator”, Transactions of Leningrad mechanical institute, Researches on some problems of the constructive theory of functions, 50, 1965, 93–115