One game-theoretical tender model
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2015), pp. 25-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper game-theoretical tender model is suggested. The model uses the idea of competitive prediction of a random variable, which could have defective distribution. The value of player's reward depends on the accuracy of predictions made by the player. The economic motivation of the considered payoff function is proposed. The tender model is considered as the non-zero sum game of two or three persons with proposed payoff function. The game is defined on the unit square with a continuous payoff function as a result of the variable change. Strategy sets of the players are segments of unit length. Equilibria in pure strategies are found for the suggested game-theoretic models. Bibliogr. 9.
Keywords: competitive prediction, defective probability distribution, equilibrium in pure strategies, tender.
@article{VSPUI_2015_1_a2,
     author = {A. V. Bure},
     title = {One game-theoretical tender model},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {25--32},
     year = {2015},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a2/}
}
TY  - JOUR
AU  - A. V. Bure
TI  - One game-theoretical tender model
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2015
SP  - 25
EP  - 32
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a2/
LA  - ru
ID  - VSPUI_2015_1_a2
ER  - 
%0 Journal Article
%A A. V. Bure
%T One game-theoretical tender model
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2015
%P 25-32
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a2/
%G ru
%F VSPUI_2015_1_a2
A. V. Bure. One game-theoretical tender model. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2015), pp. 25-32. http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a2/

[1] Bure V. I., Smolyanskaya A. A., “Competitive prediction”, Vestn. of St. Petersburg University. Serie 1: Mathematica, mechanica, astronomy, 2000, no. 1, 16–20

[2] Mazalov V. V., Sakaguchi M., “Equilibrium in $n$-Player Competitive Game of Timing”, Matematicheskaya Teoriya Igr i Ee Prilozheniya, 1:1 (2009), 67–86

[3] Sakaguchi M., Szajowski K., “Competitive prediction of a random variable”, Math. Japonica, 43:3 (1996), 461–472

[4] Bure A. V., “Competitive prediction in case defective probability distribution”, Vestn. of St. Petersburg University. Serie 10: Applied mathematics, computer science, control processes, 2014, no. 2, 19–26

[5] Mazalov V. V., Nosalskaya T. E., Tokareva J. S., “Stochastic Cake Division Protocol”, Intern. Game Theory Review, 16:2 (2014), 1440009 | DOI

[6] Mazalov V. V., Tokareva J. S., “Game-theoretic models conduction of tenders”, Matematicheskaya Teoriya Igr i Ee Prilozheniya, 2:2 (2010), 66–78

[7] Bure V. A., “Estimation of the moment of time of event occurrence”, Vestn. of St. Petersburg University. Serie 10: Applied mathematics, computer science, control processes, 2014, no. 1, 24–30

[8] Bure V. M., Parilina A. I., Rubsha A. I., Svirkina L. A., “Survival analysis of medical database of patients with prostate cancer”, Vestn. of St. Petersburg University. Serie 10: Applied mathematics, computer science, control processes, 2014, no. 2, 27–35

[9] Feller W., An introduction to probability theory and its applications, in 2 vol., per. s angl. Y. V. Prohorova, v. 2, ed. B. B. Dinkin, Mir, M., 1984, 752 pp.