The convergence of the method of constructing the Lyapunov matrix for time-delay systems
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2015), pp. 150-159 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the problem of stability analysis of delay system with periodic coefficients was studied. Exponential stability was analyzed by the method of Lyapunov–Krasovskii functional. Necessity of use of the explicit Lyapunov matrix was resolved by proposing a numerical method for construction of the Lyapunov matrix for any period and delay in the system: for the simple case of commensurate dimensions of delay and period, and for the complex case of any dimensions. High efficiency of used method was estimated by comparison with well-known Lyapunov matrices for special induced stationary systems. Bibliogr. 9.
Keywords: delay systems, stability, Lyapunov matrix.
@article{VSPUI_2015_1_a13,
     author = {K. A. Slupko},
     title = {The convergence of the method of constructing the {Lyapunov} matrix for~time-delay systems},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {150--159},
     year = {2015},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a13/}
}
TY  - JOUR
AU  - K. A. Slupko
TI  - The convergence of the method of constructing the Lyapunov matrix for time-delay systems
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2015
SP  - 150
EP  - 159
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a13/
LA  - ru
ID  - VSPUI_2015_1_a13
ER  - 
%0 Journal Article
%A K. A. Slupko
%T The convergence of the method of constructing the Lyapunov matrix for time-delay systems
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2015
%P 150-159
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a13/
%G ru
%F VSPUI_2015_1_a13
K. A. Slupko. The convergence of the method of constructing the Lyapunov matrix for time-delay systems. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2015), pp. 150-159. http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a13/

[1] Myshkis A. D., “General theory of differential equations with retarded arguments”, Success of mathem. sciences, 4:5 (1949), 99–141

[2] El'sgol'ts L. E., Norkin S. B., Introduction to the theory of differential equations with deviating argument, Science, M., 1971, 296 pp.

[3] Bellman R., Cooke K., Differential-difference equations, ed. L. E. El'sgol'ts, Mir, M., 1967, 548 pp.

[4] Zubov V. I., “On theory of linear preiodic system with time argument”, News of Higher Educational Institutions. Mathematics, 1958, no. 6, 86–95

[5] Krasovskii N. N., “On the application of the second Lyapunov method for equations with time lags”, Journal of Applied Mathematics and Mechanics, 20 (1956), 315–327

[6] Rasumikhin B. S., “Application of method of Liapunov to problems of stability of delay systems”, Avtomatica i Telemekhanica, 21:6 (1960), 740–746

[7] Letyagina O. N., Zhabko A. P., “Robust stability analysis of linear periodic system with time delay”, Intern. Journal of Modern Physics A, 24:5 (2009), 893–907 | DOI

[8] Kharitonov V. L., “Lyapunov functionals with a given derivative: Functionals full type”, Vestn. of St. Petersburg University. Serie 10: Applied mathematics, computer science, control processes, 2005, no. 1, 110–117

[9] Kharitonov V. L., “Lyapunov functionals with a given derivative: Matrix Lyapunov”, Vestn. of St. Petersburg University. Serie 10: Applied mathematics, computer science, control processes, 2005, no. 2, 200–209