Virtual formations and virtual leaders in formation control problem for group of robots
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2015), pp. 135-149 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article considers important problem of robotics — formation control for autonomous agents with decentralised control approach. The agents must build a specific formation and move towards the target point maintaining it. The suggested method is based on virtual formations and virtual leaders. The rule for calculating the position of virtual leaders and their priorities for agents is introduced. Only local information is used in suggested control rule. The position of the agent within the formation is chosen dynamically, the agents dynamically react on the change of target point position and calculate the trajectory by themselves. The suggested approach doesn't require sending to agents neither the information about the current coordinates nor the information about the direction of the virtual formation and virtual leaders. The geometric structure of formation switches in case of agent failure or in case of establishing connection with another agent, agents are fully interchangeable. The control rule is proven by computer modelling results. Bibliogr. 13. Il. 4.
Keywords: multi-agent system, formation control, formation movement, virtual formation, virtual leader.
Mots-clés : mobile robots
@article{VSPUI_2015_1_a12,
     author = {N. S. Morozova},
     title = {Virtual formations and virtual leaders in formation control problem for~group of robots},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {135--149},
     year = {2015},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a12/}
}
TY  - JOUR
AU  - N. S. Morozova
TI  - Virtual formations and virtual leaders in formation control problem for group of robots
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2015
SP  - 135
EP  - 149
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a12/
LA  - ru
ID  - VSPUI_2015_1_a12
ER  - 
%0 Journal Article
%A N. S. Morozova
%T Virtual formations and virtual leaders in formation control problem for group of robots
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2015
%P 135-149
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a12/
%G ru
%F VSPUI_2015_1_a12
N. S. Morozova. Virtual formations and virtual leaders in formation control problem for group of robots. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2015), pp. 135-149. http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a12/

[1] Gorodetsky V. I., Karsaev O. V., Samoylov V. V., Serebryakov S. V., “Applied multi-agent systems of group control”, Artificial intelligence and decision making, 2009, no. 2, 3–24

[2] Eren T., Belhumeur P., Anderson B. e. a., “A framework for maintaining formation based on rigidity”, Proc. of the IFAC World Congress (2002), 2752–2757

[3] Rodrigues J., Figueira D., Neves C. e. a., “Leader-following graph-based distributed formation control”, Robotica, 2009, no. 75, 8–14

[4] Wang J., Nian X., Wang H., “Consensus and formation control of discrete-time multi-agent systems”, Journal of Central South University of Technology, 18:4 (2011), 1161–1168 | DOI

[5] Zhengping W., Zhihong G., Xianyong W. e. a., “Consensus Based Formation Control and Trajectory Tracing of Multi-Agent Robot Systems”, Journal of Intelligent Robotic Systems, 48:3 (2007), 397–410 | DOI

[6] Lalish E., Morgansen K., Tsukamaki T., “Formation tracking control using virtual structures and deconfliction”, Proc. of the 2006 IEEE Conference on decision and control (2006), 5699–5705

[7] Zhonghai Z., Jian Y., Wenxia Z. e. a., “Formation control based on a virtual-leader-follower hierarchical structure for autonomous underwater vehicles”, Intern. journal of advancements in computing technology, 4:2 (2012), 111–121 | DOI

[8] Lewis M. A., Tan K., “High precision formation control of mobile robots using virtual structures”, Autonomous Robots, 4:4 (1997), 387–403 | DOI

[9] Eren T., Morse A. S., Belhumeur P. N., “Closing ranks in vehicle formations based on rigidity”, Proc. of the 41st IEEE Conference on Decision and Control, v. 3, 2002, 2959–2964 | DOI

[10] Xue D., Yao J., Wang J., “$H_{\infty}$ Formation Control and Obstacle Avoidance for Hybrid Multi-Agent Systems”, Journal of Applied Mathematics, 2013 (2013), 123072 | DOI

[11] Ivanov D. Y., “Building formations in groups of quadcopters with use of virtual formation”, Proc. of XII Russian conference in control problems “VSPU-2014” (Moscow, 2014), 1971–1978

[12] Lambercy F., Tharin J., Khepera 3 user manual, K-team mobile robots, (accessed 18.11.2014) http://ftp.k-team.com/KheperaIII/UserManual/Kh3.Robot.UserManual.pdf

[13] Morozova N. S., “Building and maintaining formation for multi-agent system with dynamic choice of formation structure and position of agent in the formation”, Proc. of XII Russian conference in control problems “VSPU-2014” (Moscow, 2014), 3822–3833