Computation of the Lyapunov exponent of a generalized linear stochastic dynamical system with a second-order matrix
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2015), pp. 120-134 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A stochastic dynamical system is considered, in which the state evolution is described by a generalized linear vector equation with a random transition matrix of the second order. The matrix entries include a random variable with exponential probability distribution, two positive constants, and zero. The mean asymptotic growth rate of state vector (the Lyapunov exponent) for the system is investigated. Evaluation of the Lyapunov exponent involves the development and analysis of convergence of series of one-dimensional distribution functions for all possible relations between the constants. The Lyapunov exponent is obtained as the mean value of the limiting distribution of a series. Bibliogr. 9.
Keywords: Lyapunov exponent, stochastic dynamical system, state vector growth rate
Mots-clés : convergence in distributions.
@article{VSPUI_2015_1_a11,
     author = {N. Krivulin and D. N. Vasilyev},
     title = {Computation of the {Lyapunov} exponent of a generalized linear stochastic dynamical system with a second-order matrix},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {120--134},
     year = {2015},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a11/}
}
TY  - JOUR
AU  - N. Krivulin
AU  - D. N. Vasilyev
TI  - Computation of the Lyapunov exponent of a generalized linear stochastic dynamical system with a second-order matrix
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2015
SP  - 120
EP  - 134
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a11/
LA  - ru
ID  - VSPUI_2015_1_a11
ER  - 
%0 Journal Article
%A N. Krivulin
%A D. N. Vasilyev
%T Computation of the Lyapunov exponent of a generalized linear stochastic dynamical system with a second-order matrix
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2015
%P 120-134
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a11/
%G ru
%F VSPUI_2015_1_a11
N. Krivulin; D. N. Vasilyev. Computation of the Lyapunov exponent of a generalized linear stochastic dynamical system with a second-order matrix. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2015), pp. 120-134. http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a11/

[1] Heidergott B., Olsder G. J., van der Woude J., Max-plus at Work: Modeling and Analysis of Synchronized Systems, Princeton Series in Applied Mathematics, Princeton Univ. Press, Princeton, 2006, 226 pp.

[2] Maslov V. P., Kolokoltsov V. N., Idempotent analysis and its applications to optimal control theory, Nauka, M., 1994, 144 pp.

[3] Krivulin N. K., Methods of idempotent algebra for problems in modeling and analysis of complex systems, Izd-vo St. Petersburg University, St. Petersburg, 2009, 256 pp.

[4] Olsder G. J., Resing J. A. C., De Vries R., Keane M. S., Hooghiemstra G., “Discrete event systems with stochastic processing times”, IEEE Trans. Automat. Control, 35:3 (1990), 299–302 | DOI

[5] Jean-Marie A., “Analytical computation of Lyapunov exponents in stochastic event graphs”, Performance Evaluation of Parallel and Distributed Systems. Solution Methods, Proc. 3rd QMIPS Workshop, v. 2, CWI Tracts, 106, eds. O. J. Boxma, G. M. Koole, CWI, Amsterdam, 1994, 309–341

[6] Krivulin N. K., “Calculating the Lyapunov exponent for generalized linear systems with exponentially distributed elements of the transition matrix”, Vestn. of St. Petersburg University. Serie 1: Mathematica, mechanica, astronomia, 2009, no. 2, 95–105 | DOI

[7] Krivulin N. K., “Calculating the mean growth rate of the vector of states of a stochastic system with synchronization of events”, Vestn. of St. Petersburg University. Serie 1: Mathematica, mechanica, astronomia, 2011, no. 1, 79–86 | DOI

[8] Krivulin N., “Evaluation of the mean cycle time in stochastic discrete event dynamic systems”, Proc. 6th Intern. Conf. on Queueing Theory and Network Applications, ACM, New York, 2011, 93–100

[9] Krivulin N., “Evaluation of the Lyapunov exponent for stochastic dynamical systems with event synchronization”, Recent Researches in Circuits, Systems, Multimedia and Automatic Control, Recent Advances in Electrical Engineering Series, 1, WSEAS Press, Stevens Point, WI, 2012, 152–157