Mots-clés : convergence in distributions.
@article{VSPUI_2015_1_a11,
author = {N. Krivulin and D. N. Vasilyev},
title = {Computation of the {Lyapunov} exponent of a generalized linear stochastic dynamical system with a second-order matrix},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {120--134},
year = {2015},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a11/}
}
TY - JOUR AU - N. Krivulin AU - D. N. Vasilyev TI - Computation of the Lyapunov exponent of a generalized linear stochastic dynamical system with a second-order matrix JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2015 SP - 120 EP - 134 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a11/ LA - ru ID - VSPUI_2015_1_a11 ER -
%0 Journal Article %A N. Krivulin %A D. N. Vasilyev %T Computation of the Lyapunov exponent of a generalized linear stochastic dynamical system with a second-order matrix %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2015 %P 120-134 %N 1 %U http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a11/ %G ru %F VSPUI_2015_1_a11
N. Krivulin; D. N. Vasilyev. Computation of the Lyapunov exponent of a generalized linear stochastic dynamical system with a second-order matrix. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2015), pp. 120-134. http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a11/
[1] Heidergott B., Olsder G. J., van der Woude J., Max-plus at Work: Modeling and Analysis of Synchronized Systems, Princeton Series in Applied Mathematics, Princeton Univ. Press, Princeton, 2006, 226 pp.
[2] Maslov V. P., Kolokoltsov V. N., Idempotent analysis and its applications to optimal control theory, Nauka, M., 1994, 144 pp.
[3] Krivulin N. K., Methods of idempotent algebra for problems in modeling and analysis of complex systems, Izd-vo St. Petersburg University, St. Petersburg, 2009, 256 pp.
[4] Olsder G. J., Resing J. A. C., De Vries R., Keane M. S., Hooghiemstra G., “Discrete event systems with stochastic processing times”, IEEE Trans. Automat. Control, 35:3 (1990), 299–302 | DOI
[5] Jean-Marie A., “Analytical computation of Lyapunov exponents in stochastic event graphs”, Performance Evaluation of Parallel and Distributed Systems. Solution Methods, Proc. 3rd QMIPS Workshop, v. 2, CWI Tracts, 106, eds. O. J. Boxma, G. M. Koole, CWI, Amsterdam, 1994, 309–341
[6] Krivulin N. K., “Calculating the Lyapunov exponent for generalized linear systems with exponentially distributed elements of the transition matrix”, Vestn. of St. Petersburg University. Serie 1: Mathematica, mechanica, astronomia, 2009, no. 2, 95–105 | DOI
[7] Krivulin N. K., “Calculating the mean growth rate of the vector of states of a stochastic system with synchronization of events”, Vestn. of St. Petersburg University. Serie 1: Mathematica, mechanica, astronomia, 2011, no. 1, 79–86 | DOI
[8] Krivulin N., “Evaluation of the mean cycle time in stochastic discrete event dynamic systems”, Proc. 6th Intern. Conf. on Queueing Theory and Network Applications, ACM, New York, 2011, 93–100
[9] Krivulin N., “Evaluation of the Lyapunov exponent for stochastic dynamical systems with event synchronization”, Recent Researches in Circuits, Systems, Multimedia and Automatic Control, Recent Advances in Electrical Engineering Series, 1, WSEAS Press, Stevens Point, WI, 2012, 152–157