Stability analysis of equilibrium positions of nonlinear mechanical systems with nonstationary leading parameter at the potential forces
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2015), pp. 107-119
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Certain classes of nonlinear mechanical systems described by the Lagrange differential equations of the second kind with nonstationary evolution of potential forces resulting in their domination are studied. This evolution is defined by a time-varying parameter at the vector of potential forces. It is assumed that the parameter value unlimitedly increases with time. Along with potential forces, gyroscopic and essentially nonlinear dissipative forces act on the examined systems. First, we assume that dissipative forces are determined by the homogeneous Rayleigh function, and after that the case when dissipative forces depend not only on generalized velocities but also on generalized coordinates is investigated. By the use of the Lyapunov direct method and the differential inequalities method, sufficient conditions of the asymptotic stability of the trivial equilibrium position both with respect to all variables and with respect to part of the variables are determined. Furthermore, we study the case when the dissipative forces do not act on the considered system. It is shown that the approaches suggested in this paper allow us to obtain conditions of the asymptotic stability of the equilibrium position with respect to the generalized cooordinates. Compared with known results, these conditions extend types of evolution laws of potential forces for which one can guarantee the asymptotic stability. Two examples are presented to demonstrate the effectiveness of the developed approaches. Bibliogr. 23.
Keywords: mechanical systems, potential forces, nonstationary parameter, asymptotic stability, Lyapunov functions.
@article{VSPUI_2015_1_a10,
     author = {A. Yu. Aleksandrov and E. B. Aleksandrova and A. V. Platonov},
     title = {Stability analysis of equilibrium positions of nonlinear mechanical systems with nonstationary leading parameter at the potential forces},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {107--119},
     year = {2015},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a10/}
}
TY  - JOUR
AU  - A. Yu. Aleksandrov
AU  - E. B. Aleksandrova
AU  - A. V. Platonov
TI  - Stability analysis of equilibrium positions of nonlinear mechanical systems with nonstationary leading parameter at the potential forces
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2015
SP  - 107
EP  - 119
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a10/
LA  - ru
ID  - VSPUI_2015_1_a10
ER  - 
%0 Journal Article
%A A. Yu. Aleksandrov
%A E. B. Aleksandrova
%A A. V. Platonov
%T Stability analysis of equilibrium positions of nonlinear mechanical systems with nonstationary leading parameter at the potential forces
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2015
%P 107-119
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a10/
%G ru
%F VSPUI_2015_1_a10
A. Yu. Aleksandrov; E. B. Aleksandrova; A. V. Platonov. Stability analysis of equilibrium positions of nonlinear mechanical systems with nonstationary leading parameter at the potential forces. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2015), pp. 107-119. http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a10/

[1] Zubov V. I., Analitical dynamics of gyroscopic systems, Sudostroenie, L., 1970, 320 pp.

[2] Matrosov V. M., The method of vector Lyapunov functions: the analysis of a dynamical properties of nonlinear systems, Phizmatlit, M., 2001, 384 pp.

[3] Kobrin A. I., Martynenko Yu. G., Novozhilov I. V., “On precessional equations of gyroscopic systems”, Prikl. matematika i mechanika, 40:2 (1976), 230–237

[4] Kuz'mina L. K., “On the solution of a singular pertubed problem of stability”, Prikl. matematika i mechanika, 55:4 (1991), 594–601

[5] Hapaev M. M., The asymptotic methods and stability in the theory of nonlinear oscillations, Vysshaya shkola, M., 1988, 184 pp.

[6] Strygin V. V., Sobolev V. A., Separation of motions by the method of integral manifolds, Nauka, M., 1988, 252 pp.

[7] Klimushev A. I., Krasovskiy N. N., “Uniform asymptotic stability of systems of differential equations with small parameter at derivatives”, Prikl. matematika i mechanika, 25:4 (1961), 680–690

[8] Provotorov V. V., “Construction of boundary controls in the problem on slaking of oscillations of a $m$ string system”, Vestn. of St. Petersburg University. Serie 10: Applied mathematics, computer science, control processes, 2012, no. 1, 60–69

[9] Kosov A. A., “Investigation of stability of singular systems by the vector Lyapunov functions method”, Vestn. of St. Petersburg University. Serie 10: Applied mathematics, computer science, control processes, 2005, no. 3–4, 123–129

[10] Provotorov V. V., Gnilitskaya Yu. A., “Boundary control of a strins system in the space of general solutions on graph”, Vestn. of St. Petersburg University. Serie 10: Applied mathematics, computer science, control processes, 2013, no. 3, 112–120

[11] Kozlov V. V., “On the stability of equilibrium positions in the nonstationary force field”, Prikl. matematika i mechanika, 55:1 (1991), 12–19

[12] Hatvani L., “On the action of decrement on the stability properties of equilibria of nonavtonomous systems”, Prikl. matematika i mechanika, 65:4 (2001), 725–732

[13] Sun J., Wang O. G., Zhong Q. C., “A less conservative stability test for second-order linear time-varying vector differential equations”, Intern. Journal of Control, 80:4 (2007), 523–526 | DOI

[14] Tereki I., Hatvani L., “Lyapunov functions of the mechanical energy type”, Prikl. matematika i mechanika, 49:6 (1985), 894–899

[15] Vorotnikov V. I., Rumyantsev V. V., Stability and control on a part of coordinates of phase vector of dynamical systems: theory, methods and applications, Nauchnyi mir, M., 2001, 320 pp.

[16] Aleksandrov A. Yu., Buzlukova O. A., Kosov A. A., “On the preservation of stability of equilibrium positions of mechanical systems under the evolution of dissipative forces”, Vestn. of St. Petersburg University. Serie 10: Applied mathematics, computer science, control processes, 2007, no. 1, 3–15

[17] Aleksandrov A. Yu., Kosov A. A., “On the asymptotic stability of equilibrium positions of mechanical systems with nonstationary leading parameter”, Izv. RAN. Teoria i systemy upravlrniya, 2008, no. 3, 8–22

[18] Aleksandrov A. Yu., “On the stability of equilibrium positions of nonlinear nonautonomous mechanical systems”, Prikl. matematika i mechanika, 71:3 (2007), 361–376

[19] Andreev A. S., “On the stability of an equilibrium position of a nonautonomous mechanical system”, Prikl. matematika i mechanika, 60:3 (1996), 388–396

[20] Chetaev N. G., Motion stability. Works on the analytical mechanics, Izd-vo AN SSSR, M., 1962, 535 pp.

[21] Agafonov S. A., “On the stability and stabilization of motion of nonconservative mechanical systems”, Prikl. matematika i mechanika, 74:4 (2010), 560–566

[22] Vulfson I. I., “Accounting of nonlinear dissipative forces under restricted initial information”, Teoria mechanizmov i mashin, 2003, no. 1, 70–77

[23] Aleksandrov A. Yu., Motion stability of nonautonomous dynamical systems, Izd-vo St. Petersburg University, St. Petersburg, 2004, 186 pp.