Mots-clés : evolution of population.
@article{VSPUI_2015_1_a0,
author = {K. A. Abdulina and V. N. Starkov},
title = {A quasistationary approach to the research of insect distribution in the forest system},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {5--15},
year = {2015},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a0/}
}
TY - JOUR AU - K. A. Abdulina AU - V. N. Starkov TI - A quasistationary approach to the research of insect distribution in the forest system JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2015 SP - 5 EP - 15 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a0/ LA - ru ID - VSPUI_2015_1_a0 ER -
%0 Journal Article %A K. A. Abdulina %A V. N. Starkov %T A quasistationary approach to the research of insect distribution in the forest system %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2015 %P 5-15 %N 1 %U http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a0/ %G ru %F VSPUI_2015_1_a0
K. A. Abdulina; V. N. Starkov. A quasistationary approach to the research of insect distribution in the forest system. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2015), pp. 5-15. http://geodesic.mathdoc.fr/item/VSPUI_2015_1_a0/
[1] Forecast of development of the forest sector of the Russian Federation until 2030, Food and Agriculture Organization of the United Nations, Rome, 2012, 96 pp.
[2] Office of the Federal Service for Veterinary and Phytosanitary Surveillance for Tomsk region
[3] Kerchev I. A., Krivetz S. A., “Outbreak localities Ussuri polygraph fir forests in the Tomsk region”, Interexpo Geo-Siberia, 4 (2012), 67–72
[4] Chernova N. A., “Transformation vegetation fir forests of the Tomsk region under the influence of the Ussuri polygraph”, Interexpo Geo-Siberia, 3:2 (2013), 271–277
[5] Krivetz S. A., Volkova E. S., Melńik M. A., “To the risk assessment of forest management in the areas of infestation Ussuri polygraph (for example, the Tomsk region)”, Interexpo Geo-Siberia, 3:4 (2013), 25–30
[6] Volterra V., The mathematical theory of the struggle for existence, tr. from fran. O. N. Bondarenko, ed. Yu. M. Svirezgev, Institute of Computer Technology, M.–Izhevsk, 2004, 288 pp.
[7] Pan-Ping Liu, “An analysis of a predator-prey model with both diffusion and migration”, Mathematical and Computer Modelling, 51 (2010), 1064–1070 | DOI
[8] Paz E. N., Chernova N. A., “Changing the vitality of undergrowth during the invasion Ussuri polygraph fir forests in the Tomsk region”, Interexpo Geo-Siberia, 3:4 (2013), 55–59
[9] Mamontov S. N., “Distribution of tree trunk bark beetle (Ips typographus, Coleoptera, Scolyniddae) and entomogafov”, Zoological Journal, 88:9 (2009), 1139–1145
[10] Tutunov Yu. V., “The spatial model of insect resistance to transgenic insecticidal crop”, Biophysics, 52:1 (2007), 95–113
[11] Kolpak E. P., Stolbovaya M. V., “A mathematical model of the kinetics of growth of plants”, Journal of scientific publications graduate and doctoral students, 2013, no. 12(90), 230–232
[12] Aponin Yu. M., Aponina E. A., “A mathematical model of community predator–prey with a lower threshold of the number of victims”, Computer studies and modeling, 1:1 (2009), 51–56
[13] Aponin Yu. M., Aponina E. A., “Invariance principle La Salle and mathematical models of the evolution of microbial populations”, Computer studies and modeling, 3:2 (2011), 177–190
[14] Abdulina K. A., Starkov V. N., “A research of the «trees-insects» system based on the Leslie model”, Control Processes and Sustainability, Proc. of the 44th Intern. scientific conference graduate-students and students, eds. N. V. Smirnov, T. E. Smirnova, Publ. St. Petersburg University Press, St. Petersburg, 2013, 105–108
[15] Svirezgev Yu. M., Logofet D. O., The stability of biological communities, Nauka, M., 1978, 252 pp.
[16] Gorbunova E. A., Kolpak E. P., “Mathematical models of single populations”, Vestn. of St. Petersburg University. Serie 10: Applied mathematics, computer science, control processes, 2012, no. 4, 18–30
[17] Budyanskiy A. V., Zibulin V. G., “Modeling spatiotemporal migration of closely related populations”, Computer studies and modeling, 3:4 (2011), 477–488
[18] Riznichenko G. Yu., Rubin A. B., Biophysical dynamics of production processes, Institute of Computer Science, Izhevsk, 2004, 464 pp.
[19] Kolpak E. P., Gukova I. V., Stepanova D. S., Kritzkaya A. V., “On numerical methods for solving evolution equations on the example of the mathematical “model predator–prey””, Young scientist, 2014, no. 4, 20–30
[20] Bazykin A. D., Nonlinear dynamics of interacting populations, Institute of Computer Technology, M.–Izhevsk, 2003, 368 pp.
[21] Murray D. D., Mathematical biology, Springer, New York, 2002, 551 pp.
[22] Ruxton G., Khan Q. J. A., Al-La Watia M., “The stability of internal equilibria in predator-prey models with breeding suppression”, IMA Journal of Mathematics Applied in Medicine and Biology, 19 (2002), 207–219 | DOI
[23] Mukhopadhyay B., Bhattacharyya R., “Modeling the Role of Diffusion Coefficients on Turing Instability in a Reaction-diffusion Prey-predator System”, Bull. of Mathematical Biology, 68 (2006), 293–313 | DOI
[24] Bapan Ghosh, Kar T. K., “Sustainable use of prey species in a prey-predator system: Jointly determined ecological thresholds and economic trade-offs”, Ecological Modelling, 272 (2014), 49–58 | DOI
[25] Gasratova N. A., Stolbovaya M. V., Neverova E. G., Berber A. S., “A mathematical model “resource–consumer””, The young scientist, 2014, no. 10, 5–13
[26] Aleksandrov A. Yu., Platonov A. V., “Constructing Lyapunov functions for one class of systems of nonlinear differential equations”, Differential Equations, 43:2 (2007), 267–270
[27] Aleksandrov A. Yu., Platonov A. V., “On absolute stability of a class of nonlinear systems with switching”, Automation and Remote Control, 2008, no. 7, 3–18
[28] Gordeev D. A., Malafeev O. A., Titova N. D., “A stochastic model of the decision on bringing to market innovative products”, Bull. of Civil Engineers, 2011, no. 2, 161–166
[29] Grigorieva K. V., Ivanov A. S., Malafeev O. A., “Static coalition investment model of innovative projects”, Economic Revival of Russia, 2011, no. 4, 90–98
[30] Yakushev V. P., Bure V. M., Yakushev V. V., “Stochastic modeling in agriculture”, Agrophysics, 2011, no. 1, 5–13
[31] Kolesin I. D., “Mathematical model of the development of an epidemic process with aerosol transmission”, Biophysics, 52:1 (2007), 92–94 | DOI
[32] Kolesin I. D., “Self-organization and formation of small groups”, Journal of Computer and Systems Sciences International, 47:2 (2008), 252–259 | DOI
[33] Kolesin I. D., Zhitkova E. M., “Optimization of students' anti-epidemic prophylaxis”, Automation and Remote Control, 69:7 (2008), 1216–1222 | DOI
[34] Balykina Yu. E., Kolpak E. P., “Mathematical model of follicular thyroid”, Vestn. of St. Petersburg University. Serie 10: Applied mathematics, computer science, control processes, 2013, no. 3, 20–31
[35] Gukova I. V., Kolpak E. P., “A mathematical model of solid tumor”, Natural and mathematical sciences in the modern world, 2013, no. 13, 18–25
[36] Kolbin A. S., Khmelnicky I. E., Kurilev A. A., Balykyna Ju. A., Proskurin I. A., Kolpak A. P., Bure I. V., “The first russian experience of building a simulation model of the outcomes Type 2 diabetes with discrete event modeling. Clinical and economic expertize”, Pharmacoeconomics. Modern pharmacoeconomics and pharmacoepidemiology, 2013, no. 2, 33–41
[37] Zaitcev V. F., Linchuk L. V., “On the technologies of the symmetries of ordinary differential equations”, Izvestiya Ros. gos. ped. un-ta im. A. I. Gertsena, 5:13 (2005), 38–49
[38] Aramanovich I. G., Levin V. I., The equations of mathematical physics, Nauka, M., 1969, 287 pp.
[39] Dyakonov V. N., Maple 10, 11, 12, 13, 14 in mathematical calculations, Peter, St. Petersburg, 2011, 800 pp.