@article{VSPUI_2014_4_a9,
author = {H. Zhang and M. Berz},
title = {The fast mulitpole method in the differential algebra framework},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {97--107},
year = {2014},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a9/}
}
TY - JOUR AU - H. Zhang AU - M. Berz TI - The fast mulitpole method in the differential algebra framework JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2014 SP - 97 EP - 107 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a9/ LA - en ID - VSPUI_2014_4_a9 ER -
%0 Journal Article %A H. Zhang %A M. Berz %T The fast mulitpole method in the differential algebra framework %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2014 %P 97-107 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a9/ %G en %F VSPUI_2014_4_a9
H. Zhang; M. Berz. The fast mulitpole method in the differential algebra framework. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2014), pp. 97-107. http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a9/
[1] Jansen G. H., Coulomb interactions in particle beams, Advances in electronics and electron physics supplement, 21, Academic Press, Boston, 1990, 546 pp.
[2] Kruit P., Jansen G. H., Handbook of charged particle optics, Second ed., CPR Press, Boca Ration, 2009, 341–391, 528 pp.
[3] Martini M., Prome M., “Computer studies of beam dynamics in a proton linear accelerator with space charge”, Part. accel., 2 (1971), 289–299
[4] Garnett R. W., Wangler T. P., “Space-charge calculation for bunched beams with {3-D} ellipsoidal symmetry”, Proc. of the 1991 IEEE Particle accelerator conference (APS Beam Physics) (1991), 330
[5] Lapostolle P. M., Lombardi A. M., Nath S., Tanke E., Valero S., Wangler T. P., “A new approach to space charge for linac beam dynamics codes”, Proc. of the 18th Intern. linear accelerator conference (1996), 375
[6] Lapostolle P. M., Lombardi A. M., Tanke E., Valero S., Garnett R. W., Wangler T. P., “A modified space charge routine for high intensity bunched beams”, Nuclear instruments and methods A, 379:1 (1996), 21–40 | DOI
[7] Pichoff N., Lagniel J. M., Nath S., “Simulation results with an alternate {3D} space charge routine, PICNIC”, Proc. of the {XIX} Intern. Linac conference (August 23–28, 1998), 141–143
[8] Poplau G., van Rienen U., van der Geer B., de Loos M., “Multigrid algorithms for the fast calculation of space-charge effects in accelerator design”, IEEE Transactions on magnetics, 40:2(2) (2004), 714–717 | DOI
[9] Batygin Y. K., “Particle-in-cell code BEAMPATH for beam dynamics simulations in linear accelerators and beamlines”, Nuclear instruments and methods A, 539:3 (2005), 455–489 | DOI
[10] Barnes J., Hut P., “A hierarchical $O (N \log N)$ force-calculation algorithm”, Nature, 324:4 (1986), 446–449 | DOI
[11] Barnes J. E., “A modified tree code: Don't laugh; it runs”, Journal of Computational Physics, 87:1 (1990), 161–170 | DOI | MR | Zbl
[12] Greengard L., Rokhlin V., “A fast algorithm for particle simulations”, Journal of Computational Physics, 73:2 (1987), 325–348 | DOI | MR | Zbl
[13] Carrier J., Greengard L., Rokhlin V., “A fast adaptive multipole algorithm for particle simulations”, SIAM Journal on Scientific and Statistical Computing, 9:4 (1988), 669–686 | DOI | MR | Zbl
[14] Beatson R. K., Greengard L., A short course on fast multipole methods. Wavelets, multilevel methods and elliptic PDEs, Clarendon Press, Oxford; Oxford University Press, New York, 1997, 1–37, 302 pp. | MR | Zbl
[15] Shanker B., Huang H., “Accelerated cartesian {expansions-A} fast method for computing of potentials of the form $r^{-\nu}$ for all real $\nu$”, Journal of Computational Physics, 226:1 (2007), 732–753 | DOI | MR | Zbl
[16] Berz M., Modern Map Methods in Particle Beam Physics, Academic Press, San Diego, 1999, 318 pp.
[17] Berz M., Makino K., COSY INFINITY Version 9.1 programmer's manual, Technical report MSUHEP-101214, Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA, 2011, 93 pp. http://cosyinfinity.org
[18] Zhang H., Berz M., “Fast multipole method in the differential algebra framework”, Nuclear instruments and methods A, 645 (2011), 338–344 | DOI
[19] Cheng H., Greengard L., Rokhlin V., “A fast adaptive multipole algorithm in three dimensions”, Journal of Computational Physics, 155:2 (1999), 468–498 | DOI | MR | Zbl