The fast mulitpole method in the differential algebra framework
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2014), pp. 97-107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a fast multipole method based on differential algebraic methods for the calculation of the self-fields of all charged particles on each other inside a bunch in tracking simulations. It relies on an automatic multigrid-based decomposition of charges in near and far regions and the use of high-order differential algebra methods to obtain decompositions of far fields that lead to an error that scales geometrically with the order. Different from direct summation, the computational expense scales linear with the particle number. Some simulation results are presented to illustrate the practical performance of the method for realistic problems. Bibliogr. 19. Il. 5. Table 1.
Keywords: space charge effects, fast mulitpole method, differential algebra.
@article{VSPUI_2014_4_a9,
     author = {H. Zhang and M. Berz},
     title = {The fast mulitpole method in the differential algebra framework},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {97--107},
     year = {2014},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a9/}
}
TY  - JOUR
AU  - H. Zhang
AU  - M. Berz
TI  - The fast mulitpole method in the differential algebra framework
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2014
SP  - 97
EP  - 107
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a9/
LA  - en
ID  - VSPUI_2014_4_a9
ER  - 
%0 Journal Article
%A H. Zhang
%A M. Berz
%T The fast mulitpole method in the differential algebra framework
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2014
%P 97-107
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a9/
%G en
%F VSPUI_2014_4_a9
H. Zhang; M. Berz. The fast mulitpole method in the differential algebra framework. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2014), pp. 97-107. http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a9/

[1] Jansen G. H., Coulomb interactions in particle beams, Advances in electronics and electron physics supplement, 21, Academic Press, Boston, 1990, 546 pp.

[2] Kruit P., Jansen G. H., Handbook of charged particle optics, Second ed., CPR Press, Boca Ration, 2009, 341–391, 528 pp.

[3] Martini M., Prome M., “Computer studies of beam dynamics in a proton linear accelerator with space charge”, Part. accel., 2 (1971), 289–299

[4] Garnett R. W., Wangler T. P., “Space-charge calculation for bunched beams with {3-D} ellipsoidal symmetry”, Proc. of the 1991 IEEE Particle accelerator conference (APS Beam Physics) (1991), 330

[5] Lapostolle P. M., Lombardi A. M., Nath S., Tanke E., Valero S., Wangler T. P., “A new approach to space charge for linac beam dynamics codes”, Proc. of the 18th Intern. linear accelerator conference (1996), 375

[6] Lapostolle P. M., Lombardi A. M., Tanke E., Valero S., Garnett R. W., Wangler T. P., “A modified space charge routine for high intensity bunched beams”, Nuclear instruments and methods A, 379:1 (1996), 21–40 | DOI

[7] Pichoff N., Lagniel J. M., Nath S., “Simulation results with an alternate {3D} space charge routine, PICNIC”, Proc. of the {XIX} Intern. Linac conference (August 23–28, 1998), 141–143

[8] Poplau G., van Rienen U., van der Geer B., de Loos M., “Multigrid algorithms for the fast calculation of space-charge effects in accelerator design”, IEEE Transactions on magnetics, 40:2(2) (2004), 714–717 | DOI

[9] Batygin Y. K., “Particle-in-cell code BEAMPATH for beam dynamics simulations in linear accelerators and beamlines”, Nuclear instruments and methods A, 539:3 (2005), 455–489 | DOI

[10] Barnes J., Hut P., “A hierarchical $O (N \log N)$ force-calculation algorithm”, Nature, 324:4 (1986), 446–449 | DOI

[11] Barnes J. E., “A modified tree code: Don't laugh; it runs”, Journal of Computational Physics, 87:1 (1990), 161–170 | DOI | MR | Zbl

[12] Greengard L., Rokhlin V., “A fast algorithm for particle simulations”, Journal of Computational Physics, 73:2 (1987), 325–348 | DOI | MR | Zbl

[13] Carrier J., Greengard L., Rokhlin V., “A fast adaptive multipole algorithm for particle simulations”, SIAM Journal on Scientific and Statistical Computing, 9:4 (1988), 669–686 | DOI | MR | Zbl

[14] Beatson R. K., Greengard L., A short course on fast multipole methods. Wavelets, multilevel methods and elliptic PDEs, Clarendon Press, Oxford; Oxford University Press, New York, 1997, 1–37, 302 pp. | MR | Zbl

[15] Shanker B., Huang H., “Accelerated cartesian {expansions-A} fast method for computing of potentials of the form $r^{-\nu}$ for all real $\nu$”, Journal of Computational Physics, 226:1 (2007), 732–753 | DOI | MR | Zbl

[16] Berz M., Modern Map Methods in Particle Beam Physics, Academic Press, San Diego, 1999, 318 pp.

[17] Berz M., Makino K., COSY INFINITY Version 9.1 programmer's manual, Technical report MSUHEP-101214, Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA, 2011, 93 pp. http://cosyinfinity.org

[18] Zhang H., Berz M., “Fast multipole method in the differential algebra framework”, Nuclear instruments and methods A, 645 (2011), 338–344 | DOI

[19] Cheng H., Greengard L., Rokhlin V., “A fast adaptive multipole algorithm in three dimensions”, Journal of Computational Physics, 155:2 (1999), 468–498 | DOI | MR | Zbl