One-way flow two-stage network games
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2014), pp. 72-81 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper two-stage network games are considered in which at the first stage players form a directed network, whereas at the second stage they choose feasible controls. It is assumed that payoffs of players depend on both the network and controls chosen by their “neighbors”. In a cooperative case we find cooperative behavior of players and consider the Shapley value as a solution of the game. It is proved that the Shapley value is time-inconsistent, therefore the dynamic Shapley value is defined with the use of imputation distribution procedure. Bibliogr. 9. Fig. 1. Table 1.
Keywords: network, cooperation, Shapley value, time-consistency.
@article{VSPUI_2014_4_a7,
     author = {L. A. Petrosyan and A. A. Sedakov},
     title = {One-way flow two-stage network games},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {72--81},
     year = {2014},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a7/}
}
TY  - JOUR
AU  - L. A. Petrosyan
AU  - A. A. Sedakov
TI  - One-way flow two-stage network games
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2014
SP  - 72
EP  - 81
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a7/
LA  - en
ID  - VSPUI_2014_4_a7
ER  - 
%0 Journal Article
%A L. A. Petrosyan
%A A. A. Sedakov
%T One-way flow two-stage network games
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2014
%P 72-81
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a7/
%G en
%F VSPUI_2014_4_a7
L. A. Petrosyan; A. A. Sedakov. One-way flow two-stage network games. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2014), pp. 72-81. http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a7/

[1] Petrosyan L. A., Danilov N. N., “Stability of solutions in non-zero sum differential games with transferable payoffs”, Vestnik of Leningr. University. Ser. 1: Matematika, mekhanika, astronomiya, 1979, no. 1, 52–59 | MR | Zbl

[2] Goyal S., Vega-Redondo F., “Network-formation and Social Coordination”, Games and Economic Behavior, 50 (2005), 178–207 | DOI | MR | Zbl

[3] Jackson M., Watts A., “On the formation of interaction networks in social coordination games”, Games and Economic Behavior, 41:2 (2002), 265–291 | DOI | MR | Zbl

[4] Petrosyan L. A., Sedakov A. A., Bochkarev A. O., “Two-stage network games”, Matematicheskaya teoriya igr i ee prilozheniya, 5:4 (2013), 84–104 | Zbl

[5] Bala V., Goyal S. A., “Noncooperative Model of Network Formation”, Econometrica, 68:5 (2000), 1181–1229 | DOI | MR | Zbl

[6] Shapley L. S., “A Value for $n$-Person Games”, Contributions to the Theory of Games, v. II, Princeton University Press, Princeton, 1953, 307–317 | MR

[7] Gao H., Petrosyan L., Sedakov A., “Strongly Time-consistent solutions for two-stage network games”, Procedia Computer Science, 31 (2014), 255–264 | DOI

[8] Bramoullé Y., Kranton R., “Public goods in networks”, Journal of Economic Theory, 135:1 (2007), 478–494 | DOI | MR | Zbl

[9] Galeotti A., Goyal S., “The Law of the Few”, American Economic Review, 100:4 (2010), 1468–1492 | DOI | MR