Explicit nested methods of integration of systems of structurally separated ordinary differential equations of first and second order
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2014), pp. 64-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An explicit embedded method of the Dormand–Prince type designed for integrating systems of ordinary differential equations of special form is examined. A family of economical third-order numerical schemes for integrating systems of structurally separated ordinary differential equations is constructed. Bibliogr. 10. Tabl. 2.
Keywords: embedded method, order, stage.
@article{VSPUI_2014_4_a6,
     author = {I. V. Olemskoy},
     title = {Explicit nested methods of integration of systems of structurally separated ordinary differential equations of first and second order},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {64--71},
     year = {2014},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a6/}
}
TY  - JOUR
AU  - I. V. Olemskoy
TI  - Explicit nested methods of integration of systems of structurally separated ordinary differential equations of first and second order
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2014
SP  - 64
EP  - 71
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a6/
LA  - en
ID  - VSPUI_2014_4_a6
ER  - 
%0 Journal Article
%A I. V. Olemskoy
%T Explicit nested methods of integration of systems of structurally separated ordinary differential equations of first and second order
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2014
%P 64-71
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a6/
%G en
%F VSPUI_2014_4_a6
I. V. Olemskoy. Explicit nested methods of integration of systems of structurally separated ordinary differential equations of first and second order. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2014), pp. 64-71. http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a6/

[1] Olemskoy I. V., “Fifth-Order Four-Stage Method for Numerical Integration of Special Systems”, Comput. Math. Math. Phys., 42 (2002), 1135–1145 | MR

[2] Olemskoy I. V., “Structural Approach to the Design of Explicit One-Stage Methods”, Comput. Math. Math. Phys., 43 (2003), 918–931 | MR

[3] Olemskoy I. V., “Updating of Algorithm of Allocation Structural Features”, Vestnik of St. Petersburg University. Serie 10: Applied mathematics, computer science, control processes, 2006, no. 2, 55–64

[4] Balykina Yu. E., Kolpak E. P., Kotina E. D., “Mathematical Model of Thyroid Function”, Middle-East Journal of Scientific Research, 19:3 (2014), 429–433

[5] Zhukova I. V., Kolpak E. P., Balykina Yu. E., “Mathematical Model of Growing Tumor”, Applied Mathematical Sciences, 9:30 (2014), 1455–1466 | MR

[6] Dormand J. R., Prince P. J., “New Runge–Kutta algorithms for numerical simulation in dynamical astronomy”, Celestial Mechanics, 18 (1978), 223–232 | DOI | MR | Zbl

[7] Dormand J. R., Prince P. J., “A family of embedded Runge–Kutta formulae”, J. Comp. Appl. Math., 6 (1980), 19–26 | DOI | MR | Zbl

[8] Dormand J. R., El-Mikkawy M. E. A., Prince P. J., “Families of Runge–Kutta–Nystrom formulae”, J. Numerical Analysis, 7 (1987), 235–250 | DOI | MR | Zbl

[9] Hairer E., Norsett S., Wanner G., Solving Ordinary Differential Equations, Springer, Berlin, 1987–1991, 512 pp. | MR | Zbl

[10] Arushanyan O. B., Zaletkin S. F., Numerical Solution of Ordinary Differential Equations in Fortran, Izd-vo Mosk. Gos. un-ta, M., 1990, 336 pp. | MR | Zbl