Constructing the polar cone of a convex polyhedral cone in $\mathbb{R}^3$
    
    
  
  
  
      
      
      
        
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2014), pp. 56-63
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the paper the problem of constructing the polar cone of an acute convex polyhedral cone is considered in three-dimensional Euclidean space. Using Householder transformation the considered cone is placed entirely in the upper half-space. Next on the plane $z=1$ the convex hull spanned by the points of intersection of the given ray of our cone with this plane is constructed. As a result of the sorting algorithm the vertices of the convex hull and the sequence of extreme rays of given cone are determined. After projecting the point $(0,0,1)$ lying the $z$-axis onto the corresponding face the extreme rays of the polar cone are found. Using the Householder transformation again the required cone is obtained. Bibliogr. 9.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
polyhedral cone, polar cone, convex hull, Householder's transformation.
                    
                    
                    
                  
                
                
                @article{VSPUI_2014_4_a5,
     author = {I. Y. Molchanova and L. N. Polyakova and M. A. Popova},
     title = {Constructing the polar cone of a convex polyhedral cone in $\mathbb{R}^3$},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {56--63},
     publisher = {mathdoc},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a5/}
}
                      
                      
                    TY  - JOUR
AU  - I. Y. Molchanova
AU  - L. N. Polyakova
AU  - M. A. Popova
TI  - Constructing the polar cone of a convex polyhedral cone in $\mathbb{R}^3$
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2014
SP  - 56
EP  - 63
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a5/
LA  - en
ID  - VSPUI_2014_4_a5
ER  - 
                      
                      
                    %0 Journal Article
%A I. Y. Molchanova
%A L. N. Polyakova
%A M. A. Popova
%T Constructing the polar cone of a convex polyhedral cone in $\mathbb{R}^3$
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2014
%P 56-63
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a5/
%G en
%F VSPUI_2014_4_a5
                      
                      
                    I. Y. Molchanova; L. N. Polyakova; M. A. Popova. Constructing the polar cone of a convex polyhedral cone in $\mathbb{R}^3$. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2014), pp. 56-63. http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a5/
                  
                