Constructing the polar cone of a convex polyhedral cone in $\mathbb{R}^3$
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2014), pp. 56-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper the problem of constructing the polar cone of an acute convex polyhedral cone is considered in three-dimensional Euclidean space. Using Householder transformation the considered cone is placed entirely in the upper half-space. Next on the plane $z=1$ the convex hull spanned by the points of intersection of the given ray of our cone with this plane is constructed. As a result of the sorting algorithm the vertices of the convex hull and the sequence of extreme rays of given cone are determined. After projecting the point $(0,0,1)$ lying the $z$-axis onto the corresponding face the extreme rays of the polar cone are found. Using the Householder transformation again the required cone is obtained. Bibliogr. 9.
Keywords: polyhedral cone, polar cone, convex hull, Householder's transformation.
@article{VSPUI_2014_4_a5,
     author = {I. Y. Molchanova and L. N. Polyakova and M. A. Popova},
     title = {Constructing the polar cone of a convex polyhedral cone in $\mathbb{R}^3$},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {56--63},
     year = {2014},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a5/}
}
TY  - JOUR
AU  - I. Y. Molchanova
AU  - L. N. Polyakova
AU  - M. A. Popova
TI  - Constructing the polar cone of a convex polyhedral cone in $\mathbb{R}^3$
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2014
SP  - 56
EP  - 63
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a5/
LA  - en
ID  - VSPUI_2014_4_a5
ER  - 
%0 Journal Article
%A I. Y. Molchanova
%A L. N. Polyakova
%A M. A. Popova
%T Constructing the polar cone of a convex polyhedral cone in $\mathbb{R}^3$
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2014
%P 56-63
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a5/
%G en
%F VSPUI_2014_4_a5
I. Y. Molchanova; L. N. Polyakova; M. A. Popova. Constructing the polar cone of a convex polyhedral cone in $\mathbb{R}^3$. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2014), pp. 56-63. http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a5/

[1] Chernikov S. N., Linear inequalities, Nauka, M., 1968, 488 pp. | MR | Zbl

[2] Chernikova N. B., “An algorithm for finding the general formula of non-negative solutions of a system of linear inequalities”, Zhurnal vychislitel'noj matematiki i matematicheskoj fiziki, 5:2 (1965), 334–337 | MR

[3] Noghin V. D., Baskov O. V., “Pareto set reduction based on an arbitrary finite collection of numerical information on the preference relation”, Dokl. Akad. nauk, 83:3 (2011), 418–420 | MR | Zbl

[4] Rockafellar R. T., Convex Analysis, Princeton University Press, Princeton, N. J., 1997, 451 pp. | MR | Zbl

[5] Charin V. S., Linear transformations and convex sets, Proc. manual for students, Vishcha shkola, Kiev, 1978, 191 pp.

[6] Lawson S. L., Hanson R. J., Solving Least Squares Problems, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1995, 337 pp. | MR | Zbl

[7] Cormen T. H., Leiserson C. E., Rivest R. L., Stein C., Introduction to algorithms, 3rd. ed., MIT Press, Cambridge, Mass., 2009, 1292 pp. | MR | Zbl

[8] Preparata F. R., Shamos M. I., Computational Geometry: An Introduction, Springer-Verlag, New York, 1985, 407 pp. | MR

[9] Pshenichny B. N., Danilin Y. M., Numerical methods in extremal problems, Nauka, M., 1975, 320 pp. | MR | Zbl