On the consideration of interactions in the structures forming the axially symmetric beams of charged particles
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2014), pp. 45-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of calculating the Coulomb field of charged particle beam in the injection systems is considered. To calculate the internal field of the beam we use both numerical and analytical methods of solving boundary value problem for the Poisson equation. The first, numerical, method consists in solving the Poisson equation by the finite difference method for the beam field potential with the boundary conditions on the electrodes of the accelerating structure, which depend on the actual configuration of the structure. For the analytical method the axially symmetrical beam of charged particles is represented by a set of annular cylinders. At each cylinder, the transverse beam charge density is assumed to be constant, and the longitudinal density is modeled by a trigonometric polynomial. For each cylinder, the Poisson equation is solved analytically with boundary conditions for the potential in the metal tube of a constant radius. An effective algorithm with parallel computing is proposed for the analytical method of calculation of the internal field. Bibliogr. 11. Il. 4. Table 1.
Keywords: mathematical modeling, accelerators of the charged particles, beams of the charged particles, Coulomb field of the charged beams, calculation of an internal field of beams.
@article{VSPUI_2014_4_a4,
     author = {S. A. Kozynchenko and V. A. Kozynchenko},
     title = {On the consideration of interactions in the structures forming the axially symmetric beams of charged particles},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {45--55},
     year = {2014},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a4/}
}
TY  - JOUR
AU  - S. A. Kozynchenko
AU  - V. A. Kozynchenko
TI  - On the consideration of interactions in the structures forming the axially symmetric beams of charged particles
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2014
SP  - 45
EP  - 55
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a4/
LA  - en
ID  - VSPUI_2014_4_a4
ER  - 
%0 Journal Article
%A S. A. Kozynchenko
%A V. A. Kozynchenko
%T On the consideration of interactions in the structures forming the axially symmetric beams of charged particles
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2014
%P 45-55
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a4/
%G en
%F VSPUI_2014_4_a4
S. A. Kozynchenko; V. A. Kozynchenko. On the consideration of interactions in the structures forming the axially symmetric beams of charged particles. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2014), pp. 45-55. http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a4/

[1] Bondarev B., Durkin A., Ivanov Y., Shumakov I., Vinogradov S., Ovsyannikov A., Ovsyannikov D., “The LIDOS.RFQ.Designer development”, Proc. of Particle Accelerator Conference (2001), v. 4, 2947–2949

[2] Ovsyannikov D. A., “Mathematical modeling and optimization of beam dynamics in accelerators”, RuPAC Contributions to the Proceedings — 23rd Russian Particle Accelerator Conference (2012), 68–72

[3] Drivotin O. I., Ovsyannikov D. A., “Self-consistent distributions for charged particle beam in magnetic field”, Intern. J. of Modern Physics, A24 (2009), 816–842 | DOI | Zbl

[4] Drivotin O. I., Ovsyannikov D. A., “Modeling of self-consistent distributions for longitudinally non-uniform beams”, Nuclear Instruments and Methods in Physics Research, section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 558:1 (2006), 112–118 | DOI

[5] Drivotin O. I., Ovsyannikov D. A., “Particle distributions for beam in electric field”, Proc. of the IEEE Particle Accelerator Conference, v. 3, 1999, 1857–1859

[6] Ovsyannikov D. A., Ovsyannikov A. D., Antropov I. V., Kozynchenko V. A., “BDO-RFQ code and optimization models”, Proc. of Intern. Conference Physics and Control (2005), 282–288

[7] Kozynchenko S. A., Ovsyannikov D. A., “Optimization mathematical models of beam dynamics in the injection systems with real geometry”, 4th Intern. Scientific Conference on Physics and Control, PhysCon-2009 (1–4 September 2009, Catania, Italy) http://www.physcon2009.diees.unict.it

[8] Kozynchenko S. A., Svistunov Yu. A., “Application of field and dynamics code to LEBT optimization”, Nuclear Instruments and Methods in Physics Research, Section A558 (2006), 295–298

[9] Ovsyannikov D. A., Ovsyannikov A. D., Svistunov Yu. A., Durkin A. P., Vorogushin M. F., “Beam dynamics optimization: models, methods and applications”, Nuclear Instruments and Methods in Physics Research, Section A558 (2006), 11–19

[10] Ovsyannikov A. D., “On optimization of charged particle dynamics in electrostatic field”, Vestnik of St. Petersburg State University. Serie 10: Applied mathematics, computer science, control processes, 2013, no. 2, 54–59

[11] Kozynchenko V. A., “Modeling of Coulomb interaction in an axially symmetric inhomogeneous beam of charged particles”, Vestnik of St. Petersburg State University. Serie 10: Applied mathematics, computer science, control processes, 2012, no. 3, 48–58