Optimal allocation of a collective use center
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2014), pp. 37-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper we propose a method to define a place where a collective use center can be constructed. The center is intended to serve residents of some region. It is assumed that the center should be located in such a way that provide the best access for residents of the region. It is supposed that it will be built during $T$ years, and actively exploited during $k$ years. The problem is to choose a site that provides the most convenient access for most people of the region in the respective age groups during the whole time interval $[T,T+k]$. The dynamics of the number of residents of the settlements of the region is defined by a special system of equations. The theory of exact penalties is applied to analysis of the problem, and necessary optimality conditions are obtained. Bibliogr. 11.
Keywords: collective use center, exact penalties, necessary optimality conditions.
@article{VSPUI_2014_4_a3,
     author = {V. V. Karelin and V. M. Bure},
     title = {Optimal allocation of a collective use center},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {37--44},
     year = {2014},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a3/}
}
TY  - JOUR
AU  - V. V. Karelin
AU  - V. M. Bure
TI  - Optimal allocation of a collective use center
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2014
SP  - 37
EP  - 44
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a3/
LA  - en
ID  - VSPUI_2014_4_a3
ER  - 
%0 Journal Article
%A V. V. Karelin
%A V. M. Bure
%T Optimal allocation of a collective use center
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2014
%P 37-44
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a3/
%G en
%F VSPUI_2014_4_a3
V. V. Karelin; V. M. Bure. Optimal allocation of a collective use center. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2014), pp. 37-44. http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a3/

[1] Bayram Armagan, Solak Senay, Johnson Michael, “Stochastic models for strategic resource allocation in nonproit foreclosed housing acquisitions”, European Journal of Operational Research, 233:1 (2014), 246–262 | DOI | MR

[2] Prodhon Caroline, Prins Christian, “A survey of recent research on location-routing problems”, European Journal of Operational Research, 238:1 (2014), 1–17 | DOI | MR

[3] Hallam T. G., Ma Z., “Persistence in population models with demographic fluctuations”, J. Math. Biol., 24 (1986), 327–340 | DOI | MR

[4] Macenko V. G., Analysis of some continuous models of the dynamics of the age structure of populations, Nauka, M., 1981, 326 pp. | MR

[5] Douglas J. Jr., Milner F. A., “Numerical methods for a model of population dynamics”, Calcolo, 24 (1987), 247–254 | DOI | MR | Zbl

[6] Swick K. E., “A model of single species population dynamics”, SIAM J. Math. Anal., 32 (1977), 484–498 | DOI | MR | Zbl

[7] Busenberg S., Iannelli M., “Separable models in age-dependent population dynamics”, J. Math. Biol., 22:2 (1985), 145–173 | DOI | MR | Zbl

[8] Tuljaprukar S., “Population dynamics in a variable environment”, Theor. Pop. Biol., 21 (1982), 141–165 | DOI | MR

[9] Karelin V. V., “Penalty Functions in Control Problem”, Avtomatika i telemehanika, 2004, no. 3, 137–147 | MR | Zbl

[10] Demyanov V. F., Giannessi F., Karelin V. V., “Optimal control problems via exact penalty functions”, J. of Global Optimiz., 12:3 (1998), 215–223 | DOI | MR | Zbl

[11] Demyanov V. F., Rubinov A. M., Basics of non-smooth analysis and calculus quasidifferential, Nauka, M., 1990, 431 pp. | MR