Stabilization of a scalar equation with delay in the state and control variables
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2014), pp. 144-151 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The contribution is dedicated to the stabilization problem of systems with input and state delay. We derive a stabilizing control law for the case of a scalar equation with several state and two input delays. We start with a control law of the form, where the right hand side contains future values of the state predicted by Cauchy formula. The presented control law is of the form of an integral equation. It is shown that the characteristic function of the closed-loop system consists of two factors. Special conditions that guarantee the exponential stability of the closed-loop system are derived. Exponential estimates for the solutions of the closed-loop system are given. An illustrative example is presented. Bibliogr. 9.
Keywords: time-delay systems, stabilization.
@article{VSPUI_2014_4_a13,
     author = {L. V. Shayakhmetova and V. L. Kharitonov},
     title = {Stabilization of a scalar equation with delay in the state and control variables},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {144--151},
     year = {2014},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a13/}
}
TY  - JOUR
AU  - L. V. Shayakhmetova
AU  - V. L. Kharitonov
TI  - Stabilization of a scalar equation with delay in the state and control variables
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2014
SP  - 144
EP  - 151
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a13/
LA  - en
ID  - VSPUI_2014_4_a13
ER  - 
%0 Journal Article
%A L. V. Shayakhmetova
%A V. L. Kharitonov
%T Stabilization of a scalar equation with delay in the state and control variables
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2014
%P 144-151
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a13/
%G en
%F VSPUI_2014_4_a13
L. V. Shayakhmetova; V. L. Kharitonov. Stabilization of a scalar equation with delay in the state and control variables. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2014), pp. 144-151. http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a13/

[1] Manitius A., Olbrot A., “Finite spectrum assignment problem for system with delays”, IEEE Transactions on Automatic Control, 24:4 (1979), 541–553 | DOI | MR | Zbl

[2] Krstic M., Delay Compensation for Nonlinear, Adaptive, and PDE Systems, Birkhäuser, Boston, 2009, 466 pp. | MR | Zbl

[3] Michiels W., Niculescu S.-I., Stability and Stabilization of Time-Delay Systems, SIAM, Philadelphia, 2007, 378 pp. | MR

[4] Bekiaris-Liberis N., Krstic M., “Stabilization of linear strict-feedback systems with delayed integrators”, Automatica, 46:11 (2010), 1902–1910 | DOI | MR | Zbl

[5] Kharitonov V. L., “An extension of the prediction scheme to the case of systems with both input and state delay”, Automatica, 50:1 (2014), 211–217 | DOI | MR | Zbl

[6] Tsypkin Ya. Z., “The systems with delayed feedback”, Automatika i Telemechanika, 7:2–3 (1946), 107–129

[7] Kharitonov V. L., Time-Delay Systems, Birkhäuser, Boston, 2013, 311 pp. | MR | Zbl

[8] Bellman R. E., Cooke K. L., Differential Difference Equations, Academic Press, New York, 1963, 461 pp. | MR

[9] Shayakhmetova L. V., “Stabilization problem for a scalar equation with one state and two input delays”, Control Processes and Stability, 1(17) (2014), 70–75