@article{VSPUI_2014_4_a12,
author = {A. V. Stepanov},
title = {On asymptotic behaviour of certian discrete delayed-control systems},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {133--143},
year = {2014},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a12/}
}
TY - JOUR AU - A. V. Stepanov TI - On asymptotic behaviour of certian discrete delayed-control systems JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2014 SP - 133 EP - 143 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a12/ LA - en ID - VSPUI_2014_4_a12 ER -
%0 Journal Article %A A. V. Stepanov %T On asymptotic behaviour of certian discrete delayed-control systems %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2014 %P 133-143 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a12/ %G en %F VSPUI_2014_4_a12
A. V. Stepanov. On asymptotic behaviour of certian discrete delayed-control systems. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2014), pp. 133-143. http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a12/
[1] Kosjakin A. A., Shamrikov B. M., Oscillations in digital automatic systems, Nauka, M., 1983, 334 pp.
[2] Halanay A., Wexler D., Qualitative theory of impulse systems, Per. s angl. M. I. Bukatar, G. V. Nozhak, ed. V. P. Rubanik, Mir, M., 1971, 312 pp. | MR | Zbl
[3] Bychkov A. S., Khusainov D. Ya., “Exponential convergence estimates for delay difference systems”, Differential Equations, 38:9 (2002), 1368–1370 | DOI | MR | Zbl
[4] Stepanov A. V., “Stable oscillations of one digital control system”, Vestnik of St. Petersburg State University. Ser. 10: Applied mathematics, computer science, control processes, 2006, no. 1, 157–162
[5] Elaydi S., Zhang S., “Stability and periodic solutions of difference equations with finite delay”, Funkcialaj Ekvacioj, 37 (1994), 401–413 | MR | Zbl
[6] Stojanovic S., Debeljkovic D., “Exponential delay-dependent stability for linear discrete time delay systems”, Zbornik radova Tehnoloskog fakulteta u Leskovcu, 2009, no. 19, 185–191
[7] Debeljkovic D. L., Lazarevic M. P., Stojanovic S. B., Jovanovic M. B., Milinkovic S. A., “Discrete time delayed system stability theory in the sence of Lyapunov: new results”, Proc. of the IEEE Intern. symposium on Intelligent Control (Taiwan, 2004), 511–516 | MR
[8] Wu J., Hong K.-S., “Delay-independent exponential stabililty criteria for time-varying discrete delay systems”, IEEE Transactions on Automatic Control, 39:4 (1994), 811–814 | DOI | MR | Zbl
[9] Stojanovic S., Debeljkovic D., “Exponential stability of discrete time delay systems with nonlinear perturbations”, Intern. journal of Information and Systems Sciences, 2:3 (2006), 428–435 | MR | Zbl
[10] Medina R., “Stability analysis of nonautonomous difference system with delaying arguments”, Journal of Mathematical analysis and Applications, 335 (2007), 615–625 | DOI | MR | Zbl
[11] Astrom K., Wittenmark B., Computer-controlled systems, theory and design, 3rd edition, Prentice Hall, 1996, 555 pp.