On asymptotic behaviour of certian discrete delayed-control systems
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2014), pp. 133-143 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sufficient conditions are obtained for the existence of stable periodic or almost periodic solutions of some discrete delayed control systems based on solution roughness concept. Namely, by analogy with elemental case it is demonstrated that any rough solution of discrete delayed system with stable controlled object and piecewise constant control statement having finite codomain, tends in time to a stable periodic solution of that system (or almost periodic, if e. g. the delay sequence is almost periodic). Both cases when delay presents itself in controlled object and in control action are considered. A case is also considered when the control delay depends on previous system states. Bibliogr. 11.
Keywords: discrete control systems, delay, stability, periodic solutions, almost periodic solutions.
@article{VSPUI_2014_4_a12,
     author = {A. V. Stepanov},
     title = {On asymptotic behaviour of certian discrete delayed-control systems},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {133--143},
     year = {2014},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a12/}
}
TY  - JOUR
AU  - A. V. Stepanov
TI  - On asymptotic behaviour of certian discrete delayed-control systems
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2014
SP  - 133
EP  - 143
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a12/
LA  - en
ID  - VSPUI_2014_4_a12
ER  - 
%0 Journal Article
%A A. V. Stepanov
%T On asymptotic behaviour of certian discrete delayed-control systems
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2014
%P 133-143
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a12/
%G en
%F VSPUI_2014_4_a12
A. V. Stepanov. On asymptotic behaviour of certian discrete delayed-control systems. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2014), pp. 133-143. http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a12/

[1] Kosjakin A. A., Shamrikov B. M., Oscillations in digital automatic systems, Nauka, M., 1983, 334 pp.

[2] Halanay A., Wexler D., Qualitative theory of impulse systems, Per. s angl. M. I. Bukatar, G. V. Nozhak, ed. V. P. Rubanik, Mir, M., 1971, 312 pp. | MR | Zbl

[3] Bychkov A. S., Khusainov D. Ya., “Exponential convergence estimates for delay difference systems”, Differential Equations, 38:9 (2002), 1368–1370 | DOI | MR | Zbl

[4] Stepanov A. V., “Stable oscillations of one digital control system”, Vestnik of St. Petersburg State University. Ser. 10: Applied mathematics, computer science, control processes, 2006, no. 1, 157–162

[5] Elaydi S., Zhang S., “Stability and periodic solutions of difference equations with finite delay”, Funkcialaj Ekvacioj, 37 (1994), 401–413 | MR | Zbl

[6] Stojanovic S., Debeljkovic D., “Exponential delay-dependent stability for linear discrete time delay systems”, Zbornik radova Tehnoloskog fakulteta u Leskovcu, 2009, no. 19, 185–191

[7] Debeljkovic D. L., Lazarevic M. P., Stojanovic S. B., Jovanovic M. B., Milinkovic S. A., “Discrete time delayed system stability theory in the sence of Lyapunov: new results”, Proc. of the IEEE Intern. symposium on Intelligent Control (Taiwan, 2004), 511–516 | MR

[8] Wu J., Hong K.-S., “Delay-independent exponential stabililty criteria for time-varying discrete delay systems”, IEEE Transactions on Automatic Control, 39:4 (1994), 811–814 | DOI | MR | Zbl

[9] Stojanovic S., Debeljkovic D., “Exponential stability of discrete time delay systems with nonlinear perturbations”, Intern. journal of Information and Systems Sciences, 2:3 (2006), 428–435 | MR | Zbl

[10] Medina R., “Stability analysis of nonautonomous difference system with delaying arguments”, Journal of Mathematical analysis and Applications, 335 (2007), 615–625 | DOI | MR | Zbl

[11] Astrom K., Wittenmark B., Computer-controlled systems, theory and design, 3rd edition, Prentice Hall, 1996, 555 pp.