@article{VSPUI_2014_4_a11,
author = {V. P. Peresada and N. V. Smirnov and T. E. Smirnova},
title = {Development control of a multicommodity economy based on the dynamical input-output model},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {119--132},
year = {2014},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a11/}
}
TY - JOUR AU - V. P. Peresada AU - N. V. Smirnov AU - T. E. Smirnova TI - Development control of a multicommodity economy based on the dynamical input-output model JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2014 SP - 119 EP - 132 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a11/ LA - en ID - VSPUI_2014_4_a11 ER -
%0 Journal Article %A V. P. Peresada %A N. V. Smirnov %A T. E. Smirnova %T Development control of a multicommodity economy based on the dynamical input-output model %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2014 %P 119-132 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a11/ %G en %F VSPUI_2014_4_a11
V. P. Peresada; N. V. Smirnov; T. E. Smirnova. Development control of a multicommodity economy based on the dynamical input-output model. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2014), pp. 119-132. http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a11/
[1] “Overview of the revised System of National Accounts 1993 (2008 SNA) and proposals for their use in statistics of CIS countries (based on Statistical Committee of CIS)”, Problems of Statistics, 2009, no. 11, 3–18
[2] Leontief W. W., Interindustry Economics, Per. s angl. A. G. Granberg, Economics, M., 1997, 479 pp.
[3] Leontief W. W., Essays in Economics. Theory, research, facts and policy, Politizdat, M., 1990, 415 pp.
[4] Kantorovich L. V., Mathematical methods of organizing and planning production, Publ. House of Lenigrad State University, Leningrad, 1939, 68 pp.
[5] International Input-Output Association (IIOA), The official website of the IIOA, , 2014 (date of reference: 24.03.14) [Официальный сайт ассоциации IIOA (дата обращения: 24.03.14)] http://www.iioa.org/
[6] Veduta N. I., Socially efficient economy, ed. E. N. Veduta, REA, M., 1999, 254 pp.
[7] Granberg A. G., Dynamical models of the economy, Economics, M., 1985, 240 pp.
[8] Efimov V. A., Methodology of economy support for demographics policies of stable development, SZAGS, St. Petersburg, 2007, 184 pp.
[9] Peresada V. P., Dynamics control of the economy development based on the input-output model, Politehnica-service, St. Petersburg, 2010, 169 pp.
[10] Fedoseev V. V., Garmash A. N., Daiitbegov D. M. e a., Economic-mathematical methods and applied models, ed. V. V. Fedoseev, UNITI, M., 1999, 391 pp.
[11] Tarasevich L. S., Grebennikov P. I., Leusskii A. I., Macroeconomics: the textbook, Higher Education, M., 2006, 654 pp.
[12] Mindlin Yu. B., Kolpak E. P., Balykina Yu. E., “Problems of using clusters in the Russian Federation”, Vestnik of Novosibirsk State University of economics and management, 2014, no. 1, 22–32
[13] Lezhnina E. A., Balykina Yu. E., Vlasova T. V., “Mathematical model of dynamics of productive assets of the enterprise”, Collection of scientific papers world, 31:4 (2012), 91–94
[14] Smirnov N. V., Smirnova T. E., Shakhov Ya. A., “Stabilization of a given set of equilibrium states of nonlinear systems”, Journal of Computer and Systems Sciences International, 51:2 (2012), 169–175 | DOI | MR
[15] Smirnov N. V., “Synthesis of state descriptors in the problem of multiprogram stabilization of bilinear systems”, Mathematical Notes, 72:3–4 (2002), 495–504 | DOI | MR | Zbl
[16] Smirnov N. V., Smirnova T. Ye., “The synthesis of multi-programme controls in bilinear systems”, Journal of Applied Mathematics and Mechanics, 64:6 (2000), 891–894 | DOI | MR | Zbl
[17] Smirnov N. V., Smirnova T. E., “The stabilization of a family of programmed motions of the bilinear non-stationary system”, Vestnik of St. Petersburg University. Ser. 1: Mathematics, mechanics, astronomy, 1998, no. 2(8), 70–75 | MR | Zbl
[18] Zubov V. I., Lectures on Control Theory, Lan', M., 2009, 496 pp.
[19] Andreev Yu. N., Control of finite linear objects, Nauka, M., 1976, 424 pp. | MR
[20] Smirnov N. V., Smirnova T. Ye., Tamasyan G. Sh., Stabilization of program motions at full and incomplete feedback, SOLO, St. Petersburg, 2013, 131 pp.
[21] Zubov V. I., “Interpolation of systems of differential equations”, Reports of Sciences Academy of the USSR, 318:1 (1991), 28–31 | MR | Zbl
[22] Zubov V. I., “Interpolation of systems of differential equations”, Reports of Sciences Academy of the USSR, 318:2 (1991), 274–277 | MR | Zbl
[23] Smirnov N. V., Smirnova T. E., Smirnov M. N., Smirnova M. A., “Multiprogram digital control”, Proc. of the Intern. multiconference of Engineers and Computer Scientists, IMECS 2014 (March 12–14, Hong Kong, 2014), v. 1, 268–271
[24] Smirnov N., “Multiprogram Control for Dynamic Systems: a Point of View”, Proc. of the Joint Intern. conference on Human-centered computer environments, HCCE 2012 (Aizu-Wakamatsu Hamamatsu, Japan, Duesseldorf, Germany, March 8–13, 2012), 106–113
[25] Smirnov N. V., Smirnova T. E., Shakhov Ya. A., “Stabilization of a given set of equilibrium states of nonlinear systems”, Izvestiya RAN. Theory and control systems, 2012, no. 2, 3–9 | MR
[26] Smirnov N. V., “A complete-order hybrid identifier for multiprogrammed stabilization”, Automation and Remote Control, 67:7 (2006), 1051–1061 | DOI | MR | Zbl
[27] Smirnov N. V., “Problems of multiprogram control and stabilization in various classes of dynamical systems”, Proc. of the Srednevolzhskogo mathematical society, 7:1 (2005), 192–201 | Zbl
[28] Smirnov N. V., “Multiprogrammed stabilization of linear and bilinear systems in the case of incomplete feedback”, Izvestiya RAN. Theory and control systems, 2001, no. 3, 40–44 | MR | Zbl