On regular differential games of pursuit with fixed duration
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2014), pp. 17-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In any differential game the programmed maxmin is a guaranteed payoff of first player. For a long time, due to the simplicity of geometric interpretation of programmed maxmin and difficulties of implementation for Isaacs' method, programmed maxmin was extensively studied. Researchers were interested in finding conditions under which programmed maxmin is the value of differential game. These conditions are called regular conditions. Differential games satisfying these conditions are called regular games. The programmed iteration method could be considered a non-smooth version of the dynamic programming method. Initially the programmed iteration method was aimed at studying non-regular differential games. Later it became obvious that the scope of application of programmed iteration method is wider. For example based on results of the programmed iteration method the theory of differential games could be built. One more example is provided in this article. Based on results of programmed iteration method, theorem on convex-concave functions and the theorem on measurable selector of multi-valued map we provide simple proof of well-known regular condition for linear differential game of approach with fixed duration. Bibliogr. 14.
Keywords: differential games, zero-sum games, regular games, programmed iteration method.
@article{VSPUI_2014_4_a1,
     author = {S. V. Chistyakov and F. F. Nikitin},
     title = {On regular differential games of pursuit with fixed duration},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {17--24},
     year = {2014},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a1/}
}
TY  - JOUR
AU  - S. V. Chistyakov
AU  - F. F. Nikitin
TI  - On regular differential games of pursuit with fixed duration
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2014
SP  - 17
EP  - 24
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a1/
LA  - en
ID  - VSPUI_2014_4_a1
ER  - 
%0 Journal Article
%A S. V. Chistyakov
%A F. F. Nikitin
%T On regular differential games of pursuit with fixed duration
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2014
%P 17-24
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a1/
%G en
%F VSPUI_2014_4_a1
S. V. Chistyakov; F. F. Nikitin. On regular differential games of pursuit with fixed duration. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2014), pp. 17-24. http://geodesic.mathdoc.fr/item/VSPUI_2014_4_a1/

[1] Krasovskii N. N., Subbotin A. I., Game-theoretical control problems, Springer, London, 2011, 532 pp. | MR

[2] Petrosyan L. A., Differential pursuit games, Izd-vo Leningr. un-ta, L., 1977, 222 pp. | MR | Zbl

[3] Isaacs R., Differential games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization, John Wiley and Sons, Inc., New York, 1965, 384 pp. | MR | Zbl

[4] Chentsov A. G., “The structure of an approach problem”, Dokl. Akad. Nauk of the USSR, 224 (1975), 1272–1275 | MR | Zbl

[5] Chentsov A. G., “On differential game of approach”, Mat. sb., 99:3 (1976), 394–420 | MR | Zbl

[6] Chistyakov S. V., Petrosyan L. A., “On one approach for solutions of games of pursuit”, Vestn. LGU, ser. 1, 1977, no. 1(1), 77–82 | Zbl

[7] Chistyakov S. V., “On solutions for game problems of pursuit”, Prikl. Mat. Mekh., 41 (1977), 825–832 | MR

[8] Chistyakov S. V., “On functional equations for differential games with fixed duration”, Prikl. Mat. Mekh., 46 (1982), 874–877 | MR | Zbl

[9] Chistyakov S. V., “Programmed iterations and universal $\epsilon$-optimal strategies in positional differential game”, Dokl. Akad. Nauk of the USSR, 319 (1991), 1333–1335 | MR | Zbl

[10] Chentsov A. G., Subbotin A. I., “An iterative procedure for constructing minimax and viscosity solutions for the Hamilton–Jacobi equations and its generalization”, Proc. Steklov Inst. Math., 224, 1999, 286–309 | MR | Zbl

[11] Chistyakov S. V., “Value operators in the theory of differential games”, Izv. IMI Udm. State University, 37:3 (2006), 169–172

[12] Chistyakov S. V., Nikitin F. F., “Existence and uniqueness theorem for a generalized Isaacs–Bellman equation”, Differential Equations, 43:6 (2007), 757–766 | DOI | MR | Zbl

[13] Fan Ky, “Minimax theorem”, Proc. Nat. Acad. Sci. USA, 39:1 (1953), 42–47 | DOI | MR

[14] Castaing C., Valadier M., Convex analysis and measurable multifunctions, Springer-Verlag, New York, 1977, 277 pp. | MR | Zbl